The value of x in the right angled triangle above is 7√3.
What is a right angle triangle?A right-angled triangle is a triangle, that has one of its interior angles equal to 90 degrees or any one angle is a right angle. Therefore, this triangle is also called the right triangle or 90-degree triangle.
To calculate the value of x in the right angle triangle above, we use the formula below.
Formula:
tan∅ = opp./adj.Where:
∅ = Included angle = 30°opp. = Opposite = 7adj. = Adjacent = xtan30° = 1/√3Substitute these values into equation 1 and solve for x
tan30° = 7/xx = 7/tan30°x = 7/(1/√3)x = 7√3
Hence, the value of x is 7√3.
Learn more about right angled triangle here: https://brainly.com/question/25016594
#SPJ1
If the table of the function contains exactiy two potential turning points, one with an input value of -1,which statement best describes all possible values of m
What is the axis of symmetry?
Answer:
[tex] \frac{5x {}^{2} }{2} - 8x + 6[/tex]
Step-by-step explanation:
That's your answer
HELP PLEASE !!!!!
What is m∠EFG?
Which inequality can be used to represent this problem? Water costs $5 per thousand gallons, and there is a monthly connection fee of $2. A family has budgeted $12 for their water bill this month. How many thousands of gallons of water, x, can the family use without going over budget? Responses 5x+2≤12 5 x plus 2 less or equal than 12
The required inequality is 5x + 2 ≤ 12 and the solution is 2
Linear inequality:Inequalities are mathematical expressions that compare two values or expressions, indicating that one is less than, greater than, or equal to the other.
In this problem, we used a linear inequality to represent the relationship between the amount of water used and the total cost of the water bill.
We then used algebra to rearrange the inequality and solve for x, which gave us the maximum amount of water that the family can use without going over budget.
Here we have
The cost of the water bill is made up of two components: a fixed monthly connection fee of $2, and a variable cost based on the amount of water used.
The variable cost is $5 per thousand gallons, and the total cost, C, in dollars can be expressed as:
C = 5x + 2
where x is the number of thousands of gallons used.
The problem states that the family has budgeted $12 for their water bill this month. Hence the cost must not exceed $12
=> 5x + 2 ≤ 12
The above expression can be rewritten as follows
=> 5x + 2 ≤ 12
Subtract 2 from both sides
=> 5x ≤ 10
Divide by 2 into both sides
=> x ≤ 2
Therefore,
The required inequality is 5x + 2 ≤ 12 and the solution is 2
Learn more about Inequality at
https://brainly.com/question/30231190
#SPJ1
on thurday, lisa had 5$ in her bank account. she went to target to purchase stickers for her class. each pack of stickers cost 2$
write an inequality that represents s, the number of stickers purchased that resulted in her account ending in -10.
Since we can't purchase a fractiοn οf a pack οf stickers, the smallest number οf packs Lisa wοuld have tο buy tο end up with a balance οf -10 is 8. The inequality can be written as: s ≥ 8
What is fractiοn?A fractiοn is a mathematical term that represents a part οf a whοle οr a ratiο between twο quantities.
Let's start by defining the variables and the inequality. We can use s tο represent the number οf stickers purchased, and we can use a tο represent Lisa's bank accοunt balance.
Since Lisa starts with $5 and each pack οf stickers cοsts $2, the cοst οf s packs οf stickers can be represented by the expressiοn 2s. Therefοre, Lisa's bank accοunt balance after purchasing s packs οf stickers can be represented by the expressiοn:
a = 5 - 2s
Tο represent the scenariο where Lisa's accοunt ends up with a balance οf -10, we can write the fοllοwing inequality:
a = 5 - 2s ≤ -10
Simplifying the inequality:
5 - 2s ≤ -10
-2s ≤ -15
s ≥ 7.5
Since we can't purchase a fractiοn οf a pack οf stickers, the smallest number οf packs Lisa wοuld have tο buy tο end up with a balance οf -10 is 8. Therefοre, the inequality can be written as:
s ≥ 8
To learn more about fraction from the given link:
https://brainly.com/question/10354322
#SPJ1
Find the domain of the rational expression
Answer:
x< 4 or x>4
Interval Notation [tex]\left(-\infty \:,\:4\right)\cup \left(4,\:\infty \:\right)\\[/tex]
Step-by-step explanation:
its D
What is the solution to this equation? -12x - 7 = 53 Responses a) -5 a) -5 b) 5 b) 5 c) -3.83 c) -3.83 d) 3.83
Answer:
D
Step-by-step explanation:
Mila's math teacher said that each question answered correctly on a test would be worth 3 points. Answer the questions below regarding the relationship between the number of questions correct and the score on the test.
The independent variable, x, represents the number of questions Riley answered correctly, and the dependent variable is the score because the score depends on the number of questions Riley answered correctly. A function relating these variables is R(x) = [3x] So R(23) = [69], meaning 23 correct answers will give a score of 69.
the various kinds of variables.
There are two (2) main categories of variables in an experiment, and these are as follows:
a dependent variable.
the variable that is unrelated.
An independent variable is what?
The variable that is being changed by the experimenter or researcher is known as an independent variable. This finally suggests that x is often used to denote the cause in an experiment.
The number of questions Mila successfully answers in this scenario is represented by the independent variable, x, and the score is represented by the dependent variable, y because the score depends on the number of questions Mila correctly answers. R(x) = [3x] is a function that links these variables. R(23) thus equals [69], indicating 23 correct responses.
Complete Question:
Mila's math teacher said that each question answered correctly on a test would be worth 3 points. Answer the questions below regarding the relationship between the number of questions correct and the score on the test.
The independent variable, x, represents the ______, and the dependent variable is the ______, because the ______ depends on the
A function relating these variables is R(x) = [] So R(23) = [], meaning 23
Read more independent variables here:
brainly.com/question/82796
#SPJ1
What is the equivalent of the vertical line test when we interpret the test using polar coordinates?
The polar angle test is the equivalent of the vertical line test in polar coordinates.
What are polar coordinates?Pοlar cοοrdinates are a system οf cοοrdinates used in mathematics tο describe the pοsitiοn οf a pοint in a plane using a distance and an angle.
In mathematics, the vertical line test is a tοοl used tο determine whether a relatiοn is a functiοn, based οn whether a vertical line intersects the graph οf the relatiοn at mοre than οne pοint.
When working with polar coordinates, a similar tool can be used to determine whether a curve is a function of angle, called the "polar angle test" or the "polar line test." The polar angle test states that if every ray emanating from the pole intersects the curve at most once, then the curve represents a function of angle.
In other words, if we consider the polar coordinates (r, θ) of points on the curve, and we draw a ray from the origin at angle θ for each possible value of θ, then the polar angle test says that if each ray intersects the curve at most once, then the curve represents a function of angle.
For example, the curve r = 1 + sin(θ) passes the polar angle test, since every ray from the origin intersects the curve at most once. On the other hand, the curve [tex]r^2[/tex] = cos(2θ) fails the polar angle test, since some rays intersect the curve at two points, such as the rays at θ = π/4 and θ = 5π/4. Therefore, the curve [tex]r^2[/tex] = cos(2θ) does not represent a function of angle in polar coordinates.
Therefore, The polar angle test is the equivalent of the vertical line test in polar coordinates.
To learn more about vertical line test visit:
https://brainly.com/question/29263148
#SPJ1
Please see attached need help
The vertices of the region are (7.2, -1.2) and (-2, 2).
Describe Inequality?In mathematics, an inequality is a statement that one quantity is less than or greater than another quantity. Inequalities are expressed using symbols such as < (less than), > (greater than), ≤ (less than or equal to), and ≥ (greater than or equal to).
or example, "x > 5" means that x is greater than 5, while "y ≤ 10" means that y is less than or equal to 10.
Inequalities can be solved by isolating the variable on one side of the inequality symbol, just as with equations. However, there are some important differences between solving equations and solving inequalities. When solving an inequality, the direction of the inequality symbol may need to be reversed if both sides of the inequality are multiplied or divided by a negative number. In addition, the solution to an inequality is often expressed using interval notation or a number line.
To graph the system of inequalities, we first need to graph the boundary lines:
6y - x = 6 is equivalent to y = (1/6)x + 1, which has a y-intercept of 1 and a slope of 1/6.
y + 3x = -4 is equivalent to y = -3x - 4, which has a y-intercept of -4 and a slope of -3.
The region that satisfies both inequalities is the shaded region below the blue line and to the left of the red line.
To find the vertices of the region, we need to find the points where the two boundary lines intersect. Solving the system of equations:
y = (1/6)x + 1
y = -3x - 4
We get:
(7.2, -1.2) and (-2, 2)
Therefore, the vertices of the region are (7.2, -1.2) and (-2, 2).
To know more about vertices visit:
https://brainly.com/question/29180136
#SPJ1
The vertices of the region are (7.2, -1.2) and (-2, 2).
Describe Inequality?An inequality in mathematics is a claim that one quantity is either less than or bigger than another. Inequalities are represented using symbols like < (less than), > (greater than), ≤ (less than or equal to), and ≥ (greater than or equal to).
For instance, "y ≤10" denotes that y is less than or equal to 10, whereas "x > 5" indicates that x is larger than 5.
Just like with equations, an inequality can be resolved by isolating the variable on one side of the inequality symbol. But there are some significant distinctions between resolving inequalities and resolving equations. If both sides of an inequality are multiplied or divided by a negative number, the inequality symbol's direction may need to be reversed in order to solve the inequality. In addition, interval notation or a number line are frequently used to indicate the answer to an inequality.
We must first graph the boundary lines before we can graph the system of inequality:
6y - x = 6 is equivalent to y = (1/6)x + 1, which has a y-intercept of 1 and a slope of 1/6.
y + 3x = -4 is equivalent to y = -3x - 4, which has a y-intercept of -4 and a slope of -3.
The shaded area to the left of the red line, below the blue line, meets both inequalities.
We must identify the locations where the two boundary lines connect in order to determine the region's vertices. figuring out the equations in
a system:
y = (1/6)x + 1
y = -3x - 4
We get:
(7.2, -1.2) and (-2, 2)
The vertices of the region are (7.2, -1.2) and (-2, 2).
To know more about inequality, visit:
https://brainly.com/question/30238989
#SPJ1
Write each answer in scientific notation (6x10^-3)(1.4x10^1)
The expression (6x10⁻³)(1.4x10¹) have the solution in scientific notation as 8.4 x 10⁻². Very large or small numbers can be more easily understood when written in scientific notation.
What is scientific notation, exactly?A number can be expressed using scientific notation if it cannot be conveniently expressed in decimal form due to its size or shape, or if doing so would require writing out an abnormally long string of digits. In the UK, it is also referred to as standard form, standard index form, and standard form.
Although we are aware that complete numbers can never end, yet we are unable to put such massive sums of data on paper. The numbers that appear at the millions place after the decimal also have to be represented using a more straightforward approach. A small number of integers might be difficult to portray in their larger form because of this. We use scientific notation as a result.
Given:
= (6x1.4)(10⁻³x10¹) = (8.4x10¹)(10⁻²)
= 8.4x (10¹ x 10⁻²)
= 8.4x (10¹ x 10⁻²)
= 8.4 x 10⁻²
To learn more about scientific notation, visit:
https://brainly.com/question/29440406
#SPJ1
Dmitri wants to cover the top and sides of the box shown with glass tiles that are 5 mm square. How many tiles does he need?
To get the number of tiles needed, we must first determine the surface area of the box that must be covered. Surface area of the square box = top area + front area + rear area + left side area + right side area.
Top area = length x width = 6 cm x 4 cm = 24 cm2 Front and back area = height x breadth = 8 cm x 4 cm = 32 cm2 (for each) Left and right side area = height x length = 8 cm x 6 cm = 48 cm2 (for each) Surface area total = 24 + 2(32) + 2(48) = 232 cm2. To get the number of tiles needed, divide the total surface area by the area of each tile. each's area 5 mm × 5 mm = 0.25 cm2 tile Total surface area / Area of each tile = 232 / 0.25 = 928 tiles required As a result, Dmitri need 928 glass tiles to cover the top and sides of the box.
learn more about square here:
https://brainly.com/question/14198272
#SPJ11
The function f(x) = x2 is graphed above. Which of the graphs below represents the function g(x) = (x + 1)2? A parabola declines through (negative 2, 5), (negative 1 point 5, 3), (negative 1, 2), (0, 1) and rises through (1, 2), (1 point 5, 3) and (2, 5) on the x y coordinate plane. W. A parabola declines through (negative 2, 3), (negative 1 point 5, 1), (1, 0), (0, negative 1) and rises through (1, 1), (1 point 5, 1) and (2, 2) on the x y coordinate plane. X. A parabola declines through (negative 3, 4), (negative 2 point 5, 2), (negative 2, 1), (negative 1, 0), (0, 1), (0 point 5, 2) and (1, 4) on the x y coordinate plane. Y. A parabola declines through (negative 1, 4), (negative 0 point 5, 2), (0, 1) and (1, 0) and rises through (2, 1), (2 point 5, 2) and (3, 4) on the x y coordinate plane. Z. A. W B. X C. Y D. Z'
Answer:
374753
Step-by-step explanation:
this is not correct question
The functions f(x) = (x + 1)^2 − 2 and g(x) = −(x − 2)^2 + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning
Answer:
f(x) — minimumg(x) — maximumStep-by-step explanation:
You want to know if the vertex is a minimum or maximum for functions ...
f(x) = (x +1)² -2g(x) = -(x -2)² +1ExtremesThe sign of the leading coefficient is the sign of the function values when x has a large magnitude.
If the leading coefficient is positive, the parabola opens upward. Hence the vertex is a minimum. If the leading coefficient is negative, the parabola opens downward, so the vertex is a maximum.
f(x)The coefficient of the (x+1)² term is +1, so the vertex is a minimum.
g(x)The coefficient of the (x-2)² term is -1, so the vertex is a maximum.
The vertex οf f(x) is (-1, -2) is a minimum pοint, and the vertex οf g(x) is (2, 1) is a maximum pοint, based οn the cοefficients οf the squared terms in their respective vertex fοrms.
What is vertex?In mathematics, a vertex is a pοint where twο οr mοre lines, curves, οr edges meet. It can alsο refer tο the highest οr lοwest pοint οn a curve οr surface.
The vertex fοrm οf a quadratic functiοn is given by [tex]f(x) = a(x - h)^2 + k[/tex]where (h,k) is the vertex οf the parabοla. In this fοrm, the value οf "a" determines the shape and οrientatiοn οf the parabοla, and whether the vertex is a minimum οr a maximum.
Let's first rewrite the given functiοns in vertex fοrm:
[tex]f(x) = (x + 1)^2 - 2= 1(x - (-1))^2 - 2= 1(x - (-1))^2 + (-2)[/tex]
Therefore, the vertex of f(x) is (-1, -2), and since the coefficient of the squared term is positive, the parabola opens upward. This means that the vertex (-1, -2) is a minimum point.
[tex]g(x) = -(x-2)^2+1[/tex]
[tex]= -1(x - 2)^2 + 1[/tex]
Therefore, the vertex of g(x) is (2, 1), and since the coefficient of the squared term is negative, the parabola opens downward. This means that the vertex (2, 1) is a maximum point.
In summary, the vertex of f(x) is a minimum point, and the vertex of g(x) is a maximum point, based on the coefficients of the squared terms in their respective vertex forms.
To learn more about vertex visit:
https://brainly.com/question/1217219
#SPJ1
Please refer to image
The polynomial 6x² - 8x is factored to (3x - 4)(2x 1). The polynomial 6x² - 3x 8x - 4 is factored to (2x - 1)(3x 4).
What is factored expression?When an algebraic expression is factored, it is written as the product of its factors. Any algebraic statement can be factored to remove a rational number, a negative number, or the greatest common factor (GCF).
The polynomial 6x² - 8x is factored to (3x - 4)(2x 1).
For this polynomial, first identify the greatest common factor (GCF).
This is GCF 2x.
Divide the polynomial by the GCF to get 3x - 4 and 2x 1.
These two terms can be multiplied by the factor (3x - 4) (2x 1).
The polynomial 6x² - 3x 8x - 4 (2x - 1)(3x 4) is factored. For this polynomial, we must first identify the greatest common factor (GCF).
In this case, the GCF is 2x - 1. To do this, the given polynomial is divided by the GCF, resulting in 3x 4 and 2x - 1.
These two terms can be multiplied to give the quotient (2x - 1)(3x4)
For more questions related to algebraic expression, visit:
https://brainly.com/question/4344214
#SPJ1
A diagram with line m parallel to line n is shown.
(3x + 10)°/
any
Express the value of y in terms of x.
y =
X
US
If line m parallel to line n, the value of y in terms of x is y = 3x + 10.
Let's consider the given information: a diagram with line m parallel to line n, and an angle (3x + 10)°.
Since line m is parallel to line n, we can use the properties of parallel lines and their transversals to find the relationship between x and y.
In this case, we'll use the property called alternate interior angles, which states that if two parallel lines are cut by a transversal, their alternate interior angles are congruent.
Identify the alternate interior angles.
Let's say the angle (3x + 10)° is an alternate interior angle to angle y°.
Use the property of alternate interior angles.
Since alternate interior angles are congruent, we can set up the equation:
(3x + 10)° = y°
Express y in terms of x.
Now that we have the equation, we can express y in terms of x:
y = 3x + 10
For similar question on parallel lines
https://brainly.com/question/30195834
#SPj11
Question -
A diagram with line m parallel to line n is shown express the value of y in terms of x
Find the value of x.
Answer:
[tex]12x + 19 + 22x - 9 = 180[/tex]
[tex]34x + 10 = 180[/tex]
[tex]34x = 170[/tex]
[tex]x = 5[/tex]
Answer:
x = 5
Step-by-step explanation:
The angles shown on the image are supplementary angles because they make a straight line.
The sum of supplementary angles would be equal to 180 so we can write the following equation to find the value of x:
12x + 19 + 22x - 9 = 180
Add like terms.34x + 10 = 180
Subtract 10 from both sides.34x = 170
Divide both sides by 34.x = 5
In the adjoining figure, the area of the rectangular surfaces of the prism is 720 sq. Cm, XX' 20 cm and XY : XZ: YZ = 5:3 : 4, find the length of XZ
The length of XZ in adjoining figure is 80/3 cm
What do you mean by Rectangular surfaces ?Rectangular surfaces refer to flat two-dimensional shapes that have four straight sides and four right angles, where opposite sides are parallel and equal in length. They are called rectangular because they can be formed by taking a rectangle and flattening it out into a plane. Examples of rectangular surfaces include sheets of paper, computer screens, tabletops, and walls of rectangular rooms. The area of a rectangular surface is calculated by multiplying the length and width of the rectangle.
Let the length, width, and height of the rectangular prism be x, y, and z, respectively. Then, we have:
xy = 720 (since the area of the rectangular surfaces of the prism is 720 sq. cm)
XX' = 20
Let XY = 5k, XZ = 4k, and YZ = 3k (since XY : XZ: YZ = 5:3:4).
Using the Pythagorean theorem, we can find the value of k as follows:
XX²+ XZ²= ZZ²
20²+ (4k)²= (5k)²
400 + 16k² = 25k²
9k² = 400
k² = 400/9
k = 20/3
Therefore, XZ = 4k = 80/3 cm.
Hence, the length of XZ is 80/3 cm.
Learn more about Formula of Rectangular surface here
https://brainly.com/question/30095457
#SPJ1
9(40÷5+9)+15-9
I need help solving this problem
Answer:
The answer to the problem is 159
Determine any data values that are missing from the table, assuming that the data represent a linear function. x y 4 17 6 19 21 10 a. Missing x:8 Missing y:23 c. Missing x:8 Missing y:22 b. Missing x:10 Missing y:21 d. Missing x:9 Missing y:20 Please select the best answer from the choices provided
Answer:
(a) Missing x:8 Missing y:23
Step-by-step explanation:
im kind of understanding but not completely yet, the step by steps that people are commenting are helping ! thank you
Answer: Can you take a closer picture?-
Step-by-step explanation:
Thanks!!
Answer:
Lines intersecting at a single point, One Solution
Step-by-step explanation:
1.) The first step to problems like these is to rewrite both of the equations in slope-intercept form. Slope-intercept form is a form in which y is isolated (By itself).
2.) Since we now know what to do, we can start with the first equation. You have to first get 7y by itself. To do this, you add 4x on both sides to move it to the other side. You would get 7y = 4x + 7. Now, divide by 7 on both sides to get y by itself. The final equation would be y = 4/7x + 1.
3.) Now, let's move on to the second equation. You first move x to the other side by subtracting by x on both sides. This would get you 8y = -x + 7. Finally, divide by 8 on both sides, which gets you y = -1/8x + 7/8.
4.) We got our two equations in slope-intercept form, so now we just have to do a comparison. If the slopes (The number next to the x) are the same, they are parallel lines. Parallel lines have no solutions. If the entire equation is the same, you have identical lines, which have infinite solutions. If the slopes are not the same, you have an intersection at a single point and one solution.
5.) By this criteria, since the slopes are not the same, you have an intersection at a single point. Since you have an intersection at a single point, that means you have a single solution.
The exchange rate between non-fixed currencies continuously fluctuates. The table below shows the exchange rate of the US dollar to the euro over the course of six days.
Day
$:€
Monday
1:0.7102
Tuesday
1:0.7544
Wednesday
1:0.7053
Thursday
1:0.6910
Friday
1:0.6869
Saturday
1:0.7273
Sandy has $829.04 to convert into euros. How many more euros would Sandy have if she made her trade on the day with the most favorable exchange rate than if she made her trade on the day with the least favorable exchange rate? Round all currencies to two decimal places.
a.
€33.49
b.
€55.96
c.
€67.04
d.
€107.99
55.96 more euros Sandy have if she made her trade on the day with the most favorable exchange rate than if she made her trade on the day with the least favorable exchange rate. Thus, option B is correct.
What is the exchange rate?The number of units of a foreign currency that can be purchased with one unit of the domestic currency, or the opposite, is referred to as the exchange rate between two currencies.
Here, we have
Given: The exchange rate between non-fixed currencies continuously fluctuates. Sandy has $829.04 to convert into euros.
We have to find how many more euros would Sandy have if she made her trade on the day with the most favorable exchange rate than if she made her trade on the day with the least favorable exchange rate.
To get a favorable exchange rate we should do:
USD × Exchange Rate
a) 829.04 × 0.7544 ⇒ Most favorable exchange rate (Tuesday)
= 625.42
b) 829.04 × 0.6869 × 0.94 ⇒ Least favorable exchange rate (Friday)
= 569.46
Difference of most favourable day and Least favorable day
= 625.42 - 569.46
= 55.96
Hence, 55.96 more euros Sandy have if she made her trade on the day with the most favorable exchange rate than if she made her trade on the day with the least favorable exchange rate. Thus, option B is correct.
To learn more about the exchange rate from the given link
https://brainly.com/question/29442817
#SPJ1
Complete the statement below about the two figures.
I NEED THIS PLSS
Answer:
The two figures are not equal because 3/5 doesn't does not equal 6/9
Step-by-step explanation:
The numbers just aren't equal.
Mr. Unitech decides to set up a quality candidate poster printing service. It uses the following charging rules for a candidate poster printing: For printing 250 posters or less, a standard cost of K400 is charged. For every poster printed after the first 250 copies, K5 is charged plus the maintenance fee of K50. (a) Write the multiple charging functions for the candidate poster printing service. (b) From your solution to (a), answer the following questions: (i) Calculate the charge for printing 1250 candidate posters. Calculate the charge for printing 250 candidate posters. (ii) How many candidate posters can be supplied at the cost of K2500? How many candidate posters can be supplied at the cost of K400? (iv)
The cost of producing 250 candidate posters is K400, and that 660 potential posters can be provided for K2500. This means that K400 + (x - 250) * K5 + K50 = K2500, and that K400 + (x - 250) * K5 + K50 = K2500. Finally, K400 + (x - 250) * K5 + K50 = K2500, and that K400 = 250.
What is an unitary method?The unitary method is a mathematical approach used to handle proportional and rate issues. We obtain the value of one unit of a quantity and then use it to get the value of any other quantity that is proportional to it using this procedure.
This generally recognized ease, preexisting variables, and any significant elements from the initial Diocesan customizable query may all be used to complete the task. If so, your may have another chance to interact alongside the item. Otherwise, all important influences on how algorithmic proof acts will be eliminated.
Here,
(a)
=> C(x) = K400 for 0 x 250.
=> C(x) = K400 + (x - 250) * K5 + K50 for x > 250
(b)
(i)
=> C(1250) = K400 + (1250 - 250) * K5 + K50
=> K400 + 1000*K5 + K50
=> K5400
In light of this, the cost to produce 1250 candidate posters is K5400.
We use the first portion of the charging function since 250 250 to determine the cost for printing 250 candidate posters. So:
=> C(250) = K400
Therefore, K400 is required to produce 250 candidate posters.
(ii)
=> K400 + (x - 250) * K5 + K50 = K2500
=> (x - 250) * K5 = K2050
=> x - 250 = 410
Therefore, 660 potential posters can be provided for K2500.
=> C(x) = K400
=> x = 250
250 applicant posters can be provided for K400 as a result.
To know more about unitary method visit:
brainly.com/question/28276953
#SPJ1
Graph the following system of equations.
3x + 6y = 12
3x + 2y = 8
What is the solution to the system?
A) There are infinitely many solutions.
B) There is one unique solution, (2, 1).
C) There is one unique solution, (6, 1).
D) There is no solution.
Answer:
B) There is one unique solution, (2, 1).
Attached is a graph of the system of equations.
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases} 3x+6y=12 \\ 3x+2y=8\end{cases}[/tex]
Types of Solutions to a System of Equations
Infinitely Many Solutions: when two lines overlap each other, causing their solutions to be infinite.One Solution: when two lines intersect only at one point.No Solution: when two lines do not intersect.Using a graphing calculator, we can find the solution(s) to the given system of equations. To find the solution(s), we need to look at the point where the lines intersect; this is called the point of intersection.
Answer:
B: There is one unique solution, (2, 1)
Step-by-step explanation:
Took the test.
A rectangular container 6.5 ft long, 3.2 ft wide, and 2 ft high is filled with sand to a depth of 1.3 ft. How much sand is in the container?
I'll give thanks + 5 stars and/or mark as brainliest if you can figure out how much more sand the container can hold.
There are 26.52 cubic feet of sand in the container and the container can hold an additional 14.56 cubic feet of sand.
What is the volume of a rectangular figure?
The volume of the figure is given by:
Volume = length × width × height
Given, a rectangular container 6.5 ft long, 3.2 ft wide, and 2 ft high is filled with sand to a depth of 1.3 ft.
The volume of the container is given by:
Volume = length × width × height = 6.5 ft × 3.2 ft × 2 ft = 41.6 cubic feet
Volume of sand = length × width × depth of sand = 6.5 ft × 3.2 ft × 1.3 ft = 26.52 cubic feet
Therefore, there are 26.52 cubic feet of sand in the container.
To calculate how much more sand the container can hold, you need to find the remaining volume of the container. The remaining depth of the container is:
Remaining depth = height - depth of sand = 2 ft - 1.3 ft = 0.7 ft
The remaining volume of the container is:
Remaining volume = length × width × remaining depth = 6.5 ft × 3.2 ft × 0.7 ft = 14.56 cubic feet
Therefore, the container can hold an additional 14.56 cubic feet of sand.
Learn more about volume here,
https://brainly.com/question/463363
#SPJ1
If the toaster oven cost $ 115.00 when Sandra started recording the price, how much will she pay, in dollars, if she buys it after Week 3?
Answer: Im trying to find out too
Step-by-step explantion i dont know
What is the solution to this equation?
-3(5w-4) = 6(2w-7)
Answer:
w=2
Step-by-step explanation:
1. You need to distribute your -3 and 6
2. After you do your distributing the numbers, the equation would be -15w+12=12w-42
3. You need to make x to the right or left and it look like 27w=54
4. Solve for x
5. The answer is w=2
Add the polynomials. Type your answer into the box. Use a caret (^) before an exponent. Do not add any spaces. (ex. 2X^2-2X+2)
3x^2- x-8
7x^2-9x-1
Answer: To add the polynomials, we simply add the coefficients of the same degree terms. This gives:
(3x^2 - x - 8) + (7x^2 - 9x - 1) = 10x^2 - 10x - 9
Therefore, the sum of the polynomials is 10x^2 - 10x - 9.
Step-by-step explanation:
find the formula for a function in the form y=a/1+be^-t with a y intercept of 5 and inflection point at t=1
Answer:
y = (5e + 5sqrt(3) + 5) / (1 + (e + sqrt(3)) * e^(-t))
Step-by-step explanation:
To find the formula for a function in the form y = a/(1 + be^(-t)) with a y-intercept of 5 and an inflection point at t = 1, we can use the following steps:
Step 1: Find the value of a
Since the y-intercept of the function is 5, we know that the point (0, 5) lies on the graph of the function. So, we substitute t = 0 and y = 5 into the equation and solve for a:
5 = a / (1 + be^(0))
5 = a / (1 + b1)
5 = a / (1 + b)
a = 5*(1 + b)
Step 2: Find the value of b
To find the value of b, we use the fact that the function has an inflection point at t = 1. The inflection point is where the concavity of the function changes from upward to downward or vice versa. It is also the point where the second derivative of the function is zero or undefined.
The first derivative of the function is:
y' = -abe^(-t) / (1 + b*e^(-t))^2
The second derivative of the function is:
y'' = abe^(-t)(be^(-t) - 2) / (1 + b*e^(-t))^3
Setting t = 1 and y'' = 0, we get:
0 = abe^(-1)(be^(-1) - 2) / (1 + b*e^(-1))^3
Simplifying and using the value of a from Step 1, we get:
0 = 5be^(-1)(be^(-1) - 2) / (1 + b*e^(-1))^3
Multiplying both sides by (1 + be^(-1))^3 and simplifying, we get:
0 = 5b^2e^(-2) - 10b*e^(-1) + 1
Solving for b using the quadratic formula, we get:
b = (10e^(-1) ± sqrt(100e^(-2) - 451e^(-2))) / (25*e^(-2))
b = (2e + sqrt(4e^2 - e^2)) / (2e^(-1))
b = e + sqrt(3)
Step 3: Write the function in the form y = a/(1 + be^(-t))
Using the values of a and b from Steps 1 and 2, we get:
a = 5*(1 + b) = 5*(1 + e + sqrt(3)) = 5e + 5sqrt(3) + 5
b = e + sqrt(3)
So, the function in the form y = a/(1 + be^(-t)) with a y-intercept of 5 and an inflection point at t = 1 is:
y = (5e + 5sqrt(3) + 5) / (1 + (e + sqrt(3)) * e^(-t))