Mattie wanted to measure the speed of sound through different materials. Mattie planned to use the table shown to record data.


Speed of Sound Through
Different Materials
Material Speed of Sound
Block of aluminum
Balloon filled with air
Tank filled with water
Tank filled with oil


Through which material will Mattie most likely find that sound travels the fastest?

Answers

Answer 1

Through the block of aluminum material, Mattie will most likely find that sound travels the fastest.

The correct answer is block of aluminum.

The speed of sound in a medium refers to the rate at which sound waves propagate through the medium. When you bang a drum, the sound waves produced move through the air until they reach your ears, allowing you to hear the sound.

The speed of sound varies depending on the medium through which it passes. In solids and liquids, sound travels faster than in gases.

Mattie wants to measure the speed of sound through different materials, and she planned to use the table shown to record data. The table below shows the speed of sound through different materials. Material Speed of Sound Block of aluminum 6,000 m/s Balloon filled with air 340 m/s Tank filled with water 1,500 m/s Tank filled with oil 1,200 m/s

Therefore, through the block of aluminum material, Mattie will most likely find that sound travels the fastest.

For more such questions on sound, click on:

https://brainly.com/question/27951129

#SPJ11


Related Questions

what is the angular momentum of a 0.310 kg ball rotating on the end of a thin string in a circle of radius 1.05 m at an angular speed of 11.9 rad/s ?

Answers

The angular momentum of a 0.310 kg ball rotating on the end of a thin string in a circle of radius 1.05 m at an angular speed of 11.9 rad/s is 3.32 kg.m²/s.

Angular momentum is the rotational equivalent of linear momentum. It is defined as the moment of momentum of an object, given by the product of its moment of inertia and its angular velocity. Mathematically, Angular momentum = moment of inertia × angular velocity Where, a moment of inertia = mass × radius²In this problem, a 0.310 kg ball is rotating on the end of a thin string in a circle of radius 1.05 m at an angular speed of 11.9 rad/s.

The moment of inertia of the ball can be calculated as,  a moment of inertia = mass × radius²= 0.310 × (1.05)²= 0.342255 kg.m²Substituting the given values in the formula of angular momentum, we get, angular momentum = moment of inertia × angular velocity= 0.342255 × 11.9= 3.32 kg.m²/s Therefore, the angular momentum of the ball is 3.32 kg.m²/s.

Know more about momentum here:

https://brainly.com/question/18798405

#SPJ11

does the friction force on the book point into the wall, out of the wall, up, down, or is there no friction force? explain

Answers

when a book slides down a slanted wall, the friction force on the book points out of the wall.

When a book slides down a slanted wall,  the direction of the friction force is the friction force on the book points out of the wall, according to the answer.The direction of the frictional force acting on the book is the force acting on an object in motion to oppose its motion, which points in the opposite direction of the movement.

If the book slides down a slanted wall, the frictional force must be directed out of the wall because it opposes the movement of the book, which is directed towards the wall.

Learn more about friction force here:

https://brainly.com/question/30280752

#SPJ11

what distance between the two lenses will allow the telescope to focus on an infinitely distant object and produce an infinitely distant image?

Answers

The distance between the two lenses must be greater than or equal to the sum of the focal lengths of the lenses when a telescope is used to focus on an infinitely distant object .

When a telescope is used to focus on an infinitely distant object and generate an infinitely distant image, the distance between the two lenses is equal to the sum of their focal lengths.

What is a telescope?A telescope is a tool used to magnify and concentrate the image of a distant object. Refracting and reflecting telescopes are the two main types of telescopes.

For the most part, a telescope utilizes a lens to collect and focus light. The focal length of the objective lens determines the magnification of the telescope.When the light rays leave the eyepiece and appear to have originated from the distant object, the image is formed.

The distance between the objective lens and the eyepiece is the key distance in a telescope. The length of the telescope's tube is also important because it determines the separation between the lenses and the lens's focal lengths. .

To learn more about : lenses

https://brainly.com/question/28039799

#SPJ11

Which type of modulation is used by remote-control toys?

amplitude
frequency
phase
pulse

Answers

Remote-control toys make use of pulse code modulation.

Which modulation type is used in radio-controlled toys?

Pulse-width modulation (PWM), pulse-position modulation (PPM), and more recently spread-spectrum technology are used in typical radio control systems for radio-controlled models, and servomechanisms are used to activate the various control surfaces. Digital modulation is used in all current infrared remote control designs. Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK) are two fundamental types of digital modulation. (FSK).

What is the purpose of amplitude modulation?

Electronic communication is where amplitude modulation is most commonly utilised. This method is being utilised in numerous communication channels, including computer modems, citizens band radio, VHF aviation radio, and portable two-way radios.

To know more about pulse code visit:-

https://brainly.com/question/30185219

#SPJ1

What is the heat required to decrease the temperature of a 40 keg object by 30 K if the specific heat of the object is 950J/kg*K?

Answers

Therefore, the heat required to decrease the temperature of a 40 kg object by 30 K is 1,140,000 J.

What distinguishes latent heat from specific heat?

The energy absorbed or released as a substance changes phases is known as latent heat. The amount of heat needed to raise a substance's temperature by one degree Celsius (or one Kelvin) in one gramme while maintaining a constant pressure is known as its specific heat.

The heat required to decrease the temperature of an object can be calculated using the formula:

Q = m * c * ΔT

where Q is the heat required, m is the mass of the object, c is the specific heat of the object, and ΔT is the change in temperature.

Given that the object has a mass of 40 kg and a specific heat of 950 J/kg*K, and the temperature needs to be decreased by 30 K, we can substitute these values in the formula to find the heat required:

Q = 40 kg * 950 J/kg*K * 30 K

Q = 1,140,000 J

To know more about temperature visit:-

brainly.com/question/4160783

#SPJ9

A glider on an airtrack is measured to have a momentum of -0.128 kgm/s in the x-direction (i.e., its momentum is directed to the left). If the glider is known to have a mass of 127.8 grams, what is the velocity of the glider?

What's the Solution?

Answers

The momentum is directed to the left, the velocity is negative. Therefore, the velocity of the glider is -1.002 m/s to the left.

The momentum of an object is defined as the product of its mass and velocity:

momentum = mass x velocity

In this case, we are given the momentum of the glider, its mass, and its direction of motion. We can use these values to solve for the velocity of the glider.

First, we convert the mass of the glider from grams to kilograms:

mass = 127.8 g = 0.1278 kg

Next, we use the formula for momentum to solve for the velocity of the glider:

momentum = mass x velocity

-0.128 kgm/s = 0.1278 kg x velocity

velocity = (-0.128 kgm/s) / (0.1278 kg)

velocity = -1.002 m/s.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ1

when a camera remains in place but gradually moves to a closer or wider view of a scene, this is called

Answers

When a camera remains in place but gradually moves to a closer or wider view of a scene, this is called a zoom.

A camera zoom is a cinematic effect that can be used to create a feeling of drama, movement, or excitement. It involves changing the focal length of a lens to make the subject appear closer or farther away without physically moving the camera itself.


When a camera remains in place but gradually moves to a closer or wider view of a scene, this is called a zoom.

Learn more about wider here:

https://brainly.com/question/17134093

#SPJ4

I have a room that is sealed air tight that is sitting at 90 degrees and another room, also sealed air tight, that is sitting at 40 degrees. What happens when I open the door between the rooms? How does the air flow? What does the temperature become when the rooms reach equilibrium?

Answers

Answer: When you open the door between the two rooms, the air will flow from the warmer room to the cooler room until the temperatures in both rooms reach equilibrium. This process is called heat transfer. The final temperature will depend on the size and insulation of the rooms, as well as other factors such as humidity and air pressure.

scientists believe that long-runout debris flows are able to travel long distances because the jostling back and forth of fragments in the flow creates sound waves that propagate through the material, making it behave like a fluid. this process is known as

Answers

This process involves sound waves that propagate through the material, making it behave like a fluid. The process described in the question is known as liquefaction.

which is the process by which solid soil or rock is transformed into a liquid-like state due to changes in pressure, stress, or other factors.

The term liquefaction is commonly used in the fields of geology, engineering, and materials science, and it refers to a wide range of phenomena in which solid materials become fluid-like due to the application of external forces.

In the case of long-runout debris flows, the jostling back and forth of fragments in the flow creates sound waves that cause the material to behave like a fluid, allowing it to travel long distances.

For more such questions on liquefaction

brainly.com/question/4067457

#SPJ11

g during a circus act, an elderly performer thrills the crowd by catching a cannon ball shot at him. the cannon ball has a mass of 78.0 kg and its horizontal component of velocity is 8.50 m/s when the 65.0 kg performer catches it. if the performer is on nearly frictionless roller skates, what is his recoil velocity in meters per second?

Answers

The recoil velocity of the performer in meters per second is approximately 3.06 m/s. Since the performer is on nearly frictionless roller skates, he will move backward with this velocity after catching the cannonball.

In this scenario, we can apply the principle of conservation of momentum. The total momentum of the system (cannonball and performer) before the catch is equal to the total momentum after the catch. Since the performer is initially at rest, the momentum of the cannonball before the catch is equal to its mass times its velocity.

The momentum of the system after the catch is the sum of the momenta of the cannonball and the performer. Let's assume that the recoil velocity of the performer is v. Then, according to the conservation of momentum principle:

(mass of cannonball) x (velocity of cannonball) = (mass of cannonball + mass of performer) x (final velocity of the system)

Plugging in the given values, we get:

(78.0 kg) x (8.50 m/s) = (78.0 kg + 65.0 kg) x (v)

Solving for v, we get:

v = [(78.0 kg) x (8.50 m/s)] / (78.0 kg + 65.0 kg)

v ≈ 3.06 m/s

To learn more about recoil velocity

https://brainly.com/question/14232084

#SPJ4

an 1,810 w toaster, a 1,440 w electric frying pan, and a 60 w lamp are plugged into the same outlet in a 15 a, 120 v circuit. (the three devices are in parallel when plugged into the same socket.) (a) what current (in a) is drawn by each device?

Answers

Explanation:

Watts =  amp * volts

watts/ volts = amps

1810 w / 120 v =  15.5 A

1440 w / 120 v = 12 A

60 w/ 120 v = .5 A

In reality, they are probably drawing ZERO amps     as the circuit breaker (15 Amps as given)  will likely trip or the wires will burn !

The current drawn by each device in a parallel circuit is determined by the resistance of each device.

Since the toaster has the highest resistance, it will draw the least amount of current, while the electric frying pan with the lowest resistance will draw the highest current. The lamp, being a light bulb, will draw a medium amount of current.

Using Ohm's law, the current drawn by each device can be calculated as follows:

Toaster:  1,810 W ÷ 120 V = 15.08 A

Electric Frying Pan: 1,440 W ÷ 120 V = 12 A

Lamp: 60 W ÷ 120 V = 0.5 A

Since all three devices are connected in parallel, the total current drawn from the outlet will be the sum of the individual currents drawn by each device, which is 15.58 A. This is below the maximum current rating of the circuit (15 A), so the circuit is safe.

Know more about Ohm's law here

https://brainly.com/question/1247379#

#SPJ11

a person exerts a horizontal force of 42 n on the end of a door 96 cm wide. what is the magnitude of the torque if the force is exerted (a) perpendicular to the door and (b) at a angle to the face of the door?

Answers

(A) perpendicular distance = (1/2) x 96 cm = 48 cm = 0.48 mSo, torque = force x perpendicular distance from the pivot= 42 N x 0.48 m= 20.16 Nm (B)The magnitude of the torque when the force is exerted perpendicular to the door is 20.16 Nm, and the magnitude of the torque when the force is exerted at an angle of 60° to the face of the door is 14.380 Nm.

We know that a person exerts a horizontal force of 42 N on the end of a door 96 cm wide. We need to find the magnitude of the torque if the force is exerted perpendicular to the door and at an angle to the face of the door.

(a) Torque when the force is exerted perpendicular to the door, the torque is given by the formula:

Torque = force x perpendicular distance from the pivot

We can see that the force is perpendicular to the door. So, the perpendicular distance from the pivot is equal to the distance of the line of action of the force from the pivot, which is half the width of the door.

Therefore, perpendicular distance = (1/2) x 96 cm = 48 cm = 0.48 mSo, torque = force x perpendicular distance from the pivot= 42 N x 0.48 m= 20.16 Nm

(b) Torque when the force is exerted at an angle to the face of the door

When the force is exerted at an angle to the face of the door, the torque is given by the formula: Torque = force x perpendicular distance from the pivot x sin θ

Here, θ is the angle between the force and the perpendicular to the door. We need to find the perpendicular distance from the pivot, which is equal to the distance of the line of action of the force from the pivot along the perpendicular bisector of the door. Let us assume that the angle between the force and the door is θ = 60°. In this case, the perpendicular distance from the pivot can be calculated as follows:

Perpendicular distance = (1/2) x 96 cm x sin 60°

= (1/2) x 96 cm x (sqrt(3)/2)

= 48 cm x (sqrt(3)/2)

= 41.569 cm

= 0.4169 m

So, torque = force x perpendicular distance from the pivot x sin θ= 42 N x 0.4169 m x sin 60°

= 14.380 Nm

For more such questions on distance

brainly.com/question/29552792

#SPJ11

a source emits sound with frequency of 100 hz. what is the relative velocity between the sound and observer

Answers

The relative velocity between the sound and the observer is the same as the speed of sound, which is 343 m/s. To calculate the relative velocity between the sound and the observer, we first need to know the speed of sound in the medium through which the sound is traveling.

Assuming the sound is traveling through air at room temperature, the speed of sound is approximately 343 meters per second (m/s).

Given the frequency (f) of 100 Hz, we can find the wavelength (λ) of the sound wave using the formula:

Speed of sound (v) = Frequency (f) × Wavelength (λ)

Rearranging the formula to find the wavelength:

Wavelength (λ) = Speed of sound (v) / Frequency (f)

Now, we can plug in the values:

λ = 343 m/s / 100 Hz = 3.43 meters

The relative velocity between the sound and the observer is the same as the speed of sound, which is 343 m/s. The frequency and wavelength of the sound do not affect the relative velocity between the sound and the observer.

To know more about relative velocity, refer here:

https://brainly.com/question/29655726#

#SPJ11

A spaceship has a mass of 9000 kg. The spaceship is launched from Earth and lands on a distant planet where it has a weight of 390,000 N. What is the acceleration of gravity on this planet?

Answers

the acceleration of gravity is 43.33 m/s2

A 47 N box is pulled along a frictionless horizontal surface by a 25 N weight brining from a cord on a frictionless pulley. A. What is the box’s mass? B. What is the weights mass? C. What is the box’s acceleration? D. What is the magnitude of the force exerted on the cord?

Answers

The force exerted on the cord is equal to the force acting on the weight, which is 25 N.

How to solve

To solve this problem, we'll apply Newton's second law of motion (F = ma) and work through each part step by step.

A. What is the box's mass?

We know the force acting on the box (F_box) is 47 N. Using Newton's second law, we can find the mass of the box:

F_box = m_box * a

m_box = F_box / a

However, we don't know the acceleration yet. To find that, we'll first need to analyze the forces acting on the system.

B. What is the weight's mass?

We know the force acting on the weight (F_weight) is 25 N. The force is equal to the gravitational force acting on the weight:

F_weight = m_weight * g

m_weight = F_weight / g

where g is the acceleration due to gravity (approximately 9.81 m/s^2). Plugging in the values, we get:

m_weight = 25 N / 9.81 m/s^2 ≈ 2.55 kg

C. What is the box's acceleration?

Now let's analyze the forces acting on the system. The net force acting on the box is the force exerted by the cord (F_cord), which is equal to the force acting on the weight (F_weight):

F_cord = F_weight

The net force acting on the box is also equal to the product of its mass and acceleration:

F_box = m_box * a

Since F_cord = F_weight = F_box, we can set up the following equation:

m_box * a = m_weight * g

We already know m_weight and g, so we can solve for the acceleration (a):

a = (m_weight * g) / m_box

We still need to find m_box. We can do this by rearranging the equation from part A:

m_box = F_box / a

Now, we have:

a = (m_weight * g) / (F_box / a)

Solving for a, we get:

a^2 = (m_weight * g) / F_box

a = sqrt((m_weight * g) / F_box)

Plugging in the values, we get:

a = sqrt((2.55 kg * 9.81 m/s^2) / 47 N) ≈ 0.86 m/s^2

Now that we have the acceleration, we can find the box's mass:

m_box = F_box / a ≈ 47 N / 0.86 m/s^2 ≈ 54.65 kg

D. What is the magnitude of the force exerted on the cord?

The force exerted on the cord is equal to the force acting on the weight, which is 25 N.

Read more about force here:

https://brainly.com/question/12970081

#SPJ1

starting from very far away, an object is moved closer and closer to a diverging lens, eventually reaching the lens. what happens to its image? (there could be more than one correct choice.) a) the image gets closer and closer to the lens. b) the image gets farther and farther from the lens. c) the image always remains virtual. d) the image eventually changes from real to virtual. e) the image keeps getting larger and larger.

Answers

The correct answers are A, C and E.

As the object moves closer and closer to the lens, the image gets closer and closer to the lens (A) and gets larger and larger (E).

The image will always remain virtual (C), as diverging lenses cannot produce real images. When the object is very close to the lens, the image might appear real, but it will always be a virtual image since it is not located on the other side of the lens, like a real image would be. Therefore, the image does not change from real to virtual (D).

know more about Virtual image here

https://brainly.com/question/12538517#

#SPJ11

a 1 kg metal cube at 200 degrees celsius is added to a beaker with 1 kg of very 10 degree celsius water. the metal cools off, while the water warms up. what is the approximate temperature when they reach equilibrium.

Answers

The equilibrium temperature will be between 10°C (initial temperature of the water) and 200°C (initial temperature of the metal). The exact value depends on the specific heat capacity of the metal.

To find the equilibrium temperature, we can use the concept of heat transfer. The heat lost by the metal will be equal to the heat gained by the water.
Step 1: Determine the specific heat capacities (c) of metal and water.
c_water = 4,186 J/(kg·°C)
c_metal: we don't have the specific heat capacity, so let's call it c_m.
Step 2: Set up the heat transfer equation.
Q_metal = Q_water
Q = mcΔT
Step 3: Substitute the known values.
(1 kg)(c_m)(200 - T) = (1 kg)(4,186 J/(kg·°C))(T - 10)
Step 4: Solve for T, the equilibrium temperature.
Without knowing the specific heat capacity (c_m) of the metal, we cannot find the exact equilibrium temperature. However, we can say that the equilibrium temperature will be between 10°C (initial temperature of the water) and 200°C (initial temperature of the metal). The exact value depends on the specific heat capacity of the metal.

For more such questions on equilibrium , Visit:

https://brainly.com/question/517289

#SPJ11

in a systems current configuration, a rotating rod is subjected to a steady bending moment. in redesigning the system, the rod is made stationary and and alternating bending moment of the same magnitude is applied, what is the impact on the endurance limit

Answers

When the rod is made stationary and subjected to an alternating bending moment of the same magnitude, the endurance limit is lower compared to the rotating rod with a steady bending moment. This is because the alternating stress cycles make the material more susceptible to fatigue failure.

In the student's question, there is a rotating rod in a system subjected to a steady bending moment. In the redesigned system, the rod is made stationary and an alternating bending moment of the same magnitude is applied. To determine the impact on the endurance limit, let's analyze both configurations step-by-step.
1. In the current configuration, the rotating rod is subjected to a steady bending moment. This means that the rod is experiencing constant stress over time. In this case, the endurance limit is defined as the maximum stress the rod can withstand for an infinite number of cycles without failure.
2. In the redesigned system, the rod is made stationary, and an alternating bending moment of the same magnitude is applied. This means that the rod experiences cyclic stress, where the stress varies from a maximum positive value to a maximum negative value. In this case, the endurance limit is lower compared to the constant stress situation, as the material is more prone to fatigue failure due to repeated stress cycles.

For more such questions on stress cycles

brainly.com/question/29735193

#SPJ11

If the wavelength of a water wave decreases, then what happens to its velocity?

Answers

Answer:

The velocity of a water wave depends on the properties of the medium through which it is propagating, such as the density and elasticity of the medium. It does not depend on the wavelength of the wave.

Therefore, if the wavelength of a water wave decreases, its velocity does not change. However, the frequency of the wave will increase, as frequency and wavelength are inversely proportional to each other for a wave with a constant velocity. This means that more waves will pass through a given point in a unit of time, which can affect other properties of the wave, such as its intensity and energy.

Ray has two metal bars. He knows metal bar 1 is a magnet. How could he use metal bar 1 to find out if metal bar 2 is a magnet?

Answers

Ray could use metal bar 1 in a variety of ways to detect if metal bar 2 is a magnet.

Detecting a magnet with a magnet

Ray can use metal bar 1 (the magnet) to find out if metal bar 2 is also a magnet by performing the following steps:

Hold metal bar 1 near one end of metal bar 2 without touching it.Slowly move metal bar 1 along the length of metal bar 2.If metal bar 2 is also a magnet, it will attract or repel metal bar 1 as he moves it along its length.If metal bar 2 is not a magnet, there will be no attraction or repulsion between the two bars.

Alternatively, Ray could also suspend metal bar 2 from a string and bring metal bar 1 near it. If metal bar 2 is a magnet, it will be attracted to metal bar 1 and start to swing towards it. If metal bar 2 is not a magnet, it will remain still.

More on magnets can be found here: https://brainly.com/question/2841288

#SPJ1

a mass of 2.30 kg is attached to a 1,460 n/m spring as shown. when the mass is pushed down and released, the system begins to oscillate. what is the period of oscillation of this system, in seconds?

Answers

The mass attached to a 1,460 N/m spring will have a period of oscillation of 0.80 seconds. The period of oscillation of this system will be 0.80 seconds.

The mass attached to a 1,460 N/m spring will have a period of oscillation of 0.80 seconds.What is an oscillation?Oscillation is the repetitive variation of a variable around an equilibrium value. The motion of a body or system that varies between two points is called oscillation. A spring attached to a mass will make it oscillate when compressed and released.What is the formula to find the period of oscillation of a spring mass system?The formula for finding the period of oscillation of a spring-mass system is as follows:T = 2π√m/kwhere:T is the period of oscillationk is the spring constantm is the mass attached to the springSubstituting the values in the formula:T = 2π√m/kT = 2π√2.3/1460T = 2π√0.00158T = 0.80 seconds.

Learn more about The mass here:

https://brainly.com/question/15712153

#SPJ4

show that the power dissipated by the load resistor is maximum when the resistance of the load resistor is equal to the internal resistance of the battery.

Answers

When the resistance of the load resistor is equal to the internal resistance of the battery, the power dissipated by the load resistor is maximum. This is known as the maximum power transfer theorem.

What is the maximum power transfer theorem?

The maximum power transfer theorem in electrical engineering states that the power produced by a source and delivered to a load is at its highest when the resistance of the load is equal to the internal resistance of the source.

In other words, if the load is equal to the internal resistance of the source, maximum power will be transferred between the source and the load.

According to the theorem, the power transferred to the load is at its maximum when the resistance of the load is equal to the internal resistance of the source. To show that the power dissipated by the load resistor is maximum when the resistance of the load resistor is equal to the internal resistance of the battery, follow the steps mentioned below:

1. Calculate the output voltage V0 and the output current I0 for the load resistor (RL) and the internal resistance of the battery (Ri).

2. Calculate the power dissipated by the load resistor (PL) as a function of RL.

3. In order to find the maximum value of PL, we need to differentiate the above expression with respect to RL and set it to zero. We get RL = Ri.When RL = Ri, the power dissipated by the load resistor is at its maximum.

To know more about power, refer here

https://brainly.com/question/30703855#

#SPJ11

the diameters of the main rotor and tail rotor of a single-engine helicopter are 7.70 m and 1.01 m, respectively. the respective rotational speeds are 449 rev/min and 4,120 rev/min. calculate the speeds of the tips of both rotors.

Answers

The speed of the tips of the main rotor and tail rotor can be calculated by multiplying the rotational speed by the circumference of the rotor.

The circumference of a circle is equal to the diameter multiplied by pi (π). The speed of the main rotor tip is equal to 7.70 m x 449 rev/min x π = 2410.73 m/min. The speed of the tail rotor tip is equal to 1.01 m x 4,120 rev/min x π = 12,831.55 m/min.

The main rotor and tail rotor of a helicopter are responsible for providing lift and stability. The main rotor provides lift by creating a pressure differential between its upper and lower surfaces. The tail rotor counters the torque generated by the main rotor by providing thrust in the opposite direction.

The speed of the rotor tips directly affects the performance of the helicopter and has a significant impact on the aircraft’s safety. As such, it is important to ensure that the rotor tips are spinning at the correct speeds.

know more about Speed here

https://brainly.com/question/30462853#

#SPJ11

the earth has a radius of about 6000 km. how long would it take for an object traveling at the speed of light to circle the earth? (recall that the speed of light is 300,000 km/s.) group of answer choices 1/8 of a second (0.125 s) 1/6000 of a second (0.000017 s) 1/2 of a second (0.5 s) 1/300,000 of a second (0.0000033 s)

Answers

Answer:

S = 2 π R = 2 π * 6.0E6 m = 3.8E7m       distance traveled

t = S / v = 3.8E7 / 3.0E8 = .013 sec

1/8 sec is closest

An object traveling at the speed of light will take 0.125 s to circle the earth.The correct option is therefore 1/8 of a second (0.125 s).

Recall that the circumference of a circle is given as 2πr, where r is the radius. Therefore, the circumference of the Earth is given as:

C = 2πr = 2 x 3.14 x 6000 kmC = 37680 km

Therefore, the time it takes for an object traveling at the speed of light (300,000 km/s) to circle the Earth is given by:

T = Distance / SpeedT = 37680 km / 300000 km/sT = 0.1256 s

Therefore, it will take an object traveling at the speed of light about 1/8 of a second (0.125 s) to circle the Earth. Therefore, the correct option is 1/8 of a second (0.125 s).

More on speed and distance: https://brainly.com/question/30050866

#SPJ11

at what angle in degrees is the first-order maximum for 455-nm wavelength blue light falling on double slits separated by 0.0550 mm?

Answers

At 0.474 degrees angle the first-order maximum for 455-nm wavelength blue light falling on double slits separated by 0.0550 mm.

Using the formula for the first-order maximum in a double-slit experiment, we have:

sin(θ) = (mλ) / d

where θ is the angle of the first-order maximum, m is the order number (1 for first-order maximum), λ is the wavelength of the light (455 nm), and d is the separation between the slits (0.0550 mm).

First, let's convert the units: λ = 455 nm = 455 x 10^(-9) m, and d = 0.0550 mm = 0.0550 x 10^(-3) m.

Now, we can calculate sin(θ):

sin(θ) = (1)(455 x 10^(-9) m) / (0.0550 x 10^(-3) m)

sin(θ) ≈ 0.00827273

To find the angle θ in degrees, we take the inverse sine (arcsin) of the calculated value:

θ ≈ arcsin(0.00827273) ≈ 0.474 degrees

For more such questions on angle, click on:

https://brainly.com/question/29506154

#SPJ11

how do astronomers measure that sunspots come in north pole / south pole magnetic pairs? how do they view the sun's magnetic field?

Answers

Astronomers measure sunspots and their magnetic polarity using a technique called spectropolarimetry. This method analyzes the interaction between the sun's magnetic field and its emitted light. To view the sun's magnetic field, scientists use instruments like magnetographs, which are specialized telescopes that detect and record the sun's magnetic activity.

Sunspots are cooler, darker areas on the sun's surface that possess intense magnetic activity. The Zeeman effect, a phenomenon where the magnetic field splits the spectral lines of light, is crucial in studying the sun's magnetic field. By observing these spectral lines and their shifts, astronomers can determine the strength and direction of the magnetic field in sunspots.

Sunspots typically occur in pairs with opposite magnetic polarities, one being the north pole and the other the south pole. These pairs are aligned in an east-west direction, with the leading sunspot having a magnetic polarity opposite to that of the sun's magnetic field at that particular solar hemisphere.

In summary, astronomers use spectropolarimetry and the Zeeman effect to analyze the sun's magnetic field and identify sunspots' polarities, while magnetographs provide visual representations of the magnetic field distribution.

For more such questions on Astronomers, click on:

https://brainly.com/question/2141924

#SPJ11

a nuclear reactor is used to provide heat to a steam power plant. within the heat engine, steam is generated in the boiler, the steam turns a turbine to produce power, and the steam is condensed by rejecting heat to the atmosphere before being pumped to the boiler again. which substance is considered the working fluid in this heat engine?

Answers

In the described heat engine, the working fluid is steam. Steam is produced by heating water in the boiler using the heat generated by the nuclear reactor.

The high-pressure steam then turns the turbine, producing mechanical work, which is then converted into electrical energy. As the steam expands and loses its energy, it is condensed into water by rejecting heat to the atmosphere in the condenser.

This water is then pumped back into the boiler to be heated again and converted into steam, thus completing the cycle. Steam is an excellent working fluid for this type of heat engine because it has a high heat capacity, which means that it can store a lot of heat energy per unit mass.

Additionally, it undergoes a phase change when it is heated, which allows it to expand and produce mechanical work when it is under pressure. Finally, steam is readily available and relatively cheap to produce, making it an ideal choice for powering large-scale steam power plants.

Learn more about nuclear here:

https://brainly.com/question/13090058

#SPJ4

Complete question is:

A nuclear reactor is used to provide heat to a steam power plant. Within the heat engine, steam is generated in the boiler, the steam turns a turbine to produce power, and the steam is condensed by rejecting heat to the atmosphere before being pumped to the boiler again. Which substance is considered the working fluid in this heat engine? The water going through the boiler, turbine, and condenser

violet light of wavelength 407 nm ejects electrons with a maximum kinetic energy of 0.764 ev from a certain metal. what is the work function of this metal (in ev)?

Answers

Violet light of wavelength 407 nm ejects electrons with a maximum kinetic energy of 0.764 eV from a certain metal. the work function of this metal is approximately 4.1 eV.

We can use the following equation to relate the maximum kinetic energy of the ejected electrons to the work function of the metal and the energy of the incident photons:

Kinetic energy of expelled electrons = incident photon energy - metal work function

We are given the wavelength of the incident photons, which we can use to find their energy using the formula:

Energy of photon = hc/λ

where h = 6.626 x 10^-34 J s is Planck's constant, c = 3.00 x 10^8 m/s is the speed of light, and λ = 407 nm = 4.07 x 10^-9 m is the wavelength of the incident light.

Substituting the given values, we get:

Energy of photon = hc/λ

Energy of photon = (6.626 x 10^-34 J s) x (3.0 x 10^8 m/s) / (407 x 10^-9 m)

Energy of photon ≈ 4.86 eV

Now we can use the first equation to find the work function of the metal:

Work function of the metal = Energy of incident photons - Kinetic energy of ejected electrons

Work function of the metal = 4.86 eV - 0.764 eV ≈ 4.1 eV

Therefore, the work function of this metal is approximately 4.1 eV.

For more such questions on work function, click on:

https://brainly.com/question/19427469

#SPJ11

two conducting spheres have radii of r1 and r2, with r1 greater than r2. if they are far apart the capacitance is proportional to:

Answers

"Two conducting spheres have radii of r1 and r2, with r1 greater than r2. If they are far apart the capacitance is proportional to: 1/r1 - 1/r2

The capacitance of two conducting spheres with radii r1 and r2, where r1 is greater than r2, and they are far apart is proportional to the difference in inverse radii. This can be written as:

C = k (A / d)

where C is the capacitance, k is the proportionality constant, A is the surface area, and d is the distance between the two spheres.

The surface area of a sphere is proportional to r^2,

so:C ∝ A = k (r1^2 + r2^2)

The inverse of capacitance is proportional to the difference in inverse radii,

so:1/C ∝ 1/(r1 - r2)

1/C = k' (1/r1 - 1/r2)

where k' is another proportionality constant, which combines with k to give the final constant of proportionality.

Therefore, the capacitance of two conducting spheres with radii r1 and r2, where r1 is greater than r2, and they are far apart is proportional to: 1/r1 - 1/r2.

For more such questions on capacitance, click on:

https://brainly.com/question/16998502

#SPJ11

Lightning strikes the ground. The cloud and bolt had a negative charge. What charge did the ground have?
Explain.

Answers

The ground typically has a positive charge when a lightning strike occurs. This is because lightning results from the discharge of excess electrical energy between two charged regions, with one being negatively charged (the cloud) and the other positively charged.

What causes lightning strikes to occur?

Lightning strikes occur due to the discharge of excess electrical energy between two charged regions, typically between a negatively charged cloud and a positively charged ground.

How does lightning affect the environment?

Lightning can cause wildfires, power outages, and damage to infrastructure. It can also release nitrogen oxides into the atmosphere, which contribute to air pollution and can have negative effects on human health and the environment.

However, lightning can also provide beneficial effects by helping to replenish the ozone layer and providing nitrogen to plants.

To know more about lightning,visit:

https://brainly.com/question/16854009

#SPJ1

Other Questions
what is the main purpose of using guides in powerpoint? review later organize table of content format charts and tables ensure alignment improve engagement enable transitions and animations when transferring investments between categories, unrealized holding gains for securities transferred from trading to available-for-sale a.must be realized and reported in comprehensive income. b.must be realized on the income statement. c.must be recognized on the income statement. d.require no additional accounting. during which time in pregnancy would the nurse inform the client that the fetus shows a marked increase in size? laci- mutant create an abnormal repressor protein that is unable to bind the operator and results in a constitutive expression of lac z and lac y. suppose, another kind of lacis mutant happened to be generated that created a kind of repressor protein molecule that was unable to bind the inducer (allo-lactose) and stays bound to operator all the time. what would happen in that case to the expression of lac z and lac y? what is a significant challenge that supervisors face with regard to employee assistance programs (eaps)? group of answer choices workers who need assistance choose not to use the company's eap cost of implementation a lack of top management support a lack of willingness to allow employees to take time off from work to seek help a certain string that is 1.0 m long vibrates with a standing wave that has a wavelength of 2.0 m. how many nodes and antinodes will appear on the vibrating string? which is the correct expression for ksp written in terms of the molar solubility for na3po4 (s) in pure water? british constitutional authority was based on long legal practices that were consistently written down. true or false WXYZ is a trapezium . If WY//XY and M is the mid point of YZ then prove that: Area of triangle WXM = 1/2 AREA OF TRAPEZIUM WXYZ Rewrite the fractions 2/5 and 4/15 as fractions with a least common denominator a fascicle is a group of answer choices group of muscle fibers that are encased in the perimysium. layer of connective tissue that separates muscle from skin. collection of myofibrils in a muscle fiber. group of muscle fibers that are all part of the same motor unit. group of muscle fibers and motor neurons. 1 /4 of the schoolyard is used by the fifth graders for recess, as shown by the shaded part of the diagram. Teachers have 3 different activities planned for recess that will take up the same amount of space. Find the area of the shaded region. Leave your answer in terms of a and in simplified radicalform.12015 cmThe area of the shaded region is(Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer in terms of x.)50/1)(1)In Da Vinci uses the golden ratio in his art. It is supposed to be pleasing to the eye. Looking at this picture, explain how the men in blue move on the streets. treasury bills are currently paying 6 percent and the inflation rate is 3.3 percent. a. what is the approximate real rate of interest? (do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) b. what is the exact real rate? (do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) PLS HELP WILl MARK BRAiNLIEST occupational in karl marx's view, a worker who identifies with the wealthy and believes that she can achieve great wealth through hard work is likely to have developed a consciousness. means that jobs are: pls help will mark brainlist In the diagram below, fg is parallel to CD, if CE = 32, FE = 20 and CD = 16 find the length of FG . Figures are not necessarily drawn to scale. which of the following should be avoided in order to improve the clarity of a speech? multiple choice question. commonly used words obscure technical terms short words with one or two syllables plain and unexciting words