1. The three particles that make up an atom are:
a. Protons: Positively charged particles found in the nucleus of an atom.
b. Neutrons: Neutral particles found in the nucleus of an atom.
c. Electrons: Negatively charged particles orbiting around the nucleus.
i. Hole current: In a semiconductor, when an electron from the valence band moves to the conduction band, it leaves behind a vacancy known as a hole. The movement of these holes is referred to as hole current. Holes behave like positive charges and can contribute to current flow in a semiconductor.
ii. Intrinsic semiconductor: An intrinsic semiconductor is a pure semiconductor material with no intentional impurities. It has equal numbers of electrons in the conduction band and holes in the valence band at thermal equilibrium. Examples of intrinsic semiconductors include pure silicon (Si) and germanium (Ge).
iii. Ionization: Ionization refers to the process of removing or adding electrons to an atom, resulting in the formation of ions. It can occur due to various mechanisms such as thermal excitation, collisions, or exposure to electromagnetic radiation. Ionization can lead to the generation of free charge carriers (electrons and holes) in a semiconductor.
Description of electron conduction mechanism inside a semiconductor:
When a semiconductor is subjected to an energy source (e.g., heat, light, or electric field), the electrons in the valence band gain enough energy to move to the higher energy conduction band. This excitation of electrons creates electron-hole pairs. The energy source can provide the required energy through various processes, such as thermal excitation, absorption of photons, or electric field-induced drift.
In thermal excitation, the energy source is heat, which increases the temperature of the semiconductor and causes electrons to gain energy. In the case of photon absorption, photons with energy higher than the bandgap of the semiconductor can be absorbed by electrons, raising them to the conduction band. Electric field-induced drift occurs when an external electric field is applied to the semiconductor, causing the electrons to move towards the positive terminal.
Comparison between donor and acceptor impurities:
Donor impurity: A donor impurity is an impurity atom that introduces additional electrons to the semiconductor's conduction band. Donor impurities have more valence electrons than the host semiconductor, such as phosphorus (P) in silicon.
Acceptor impurity: An acceptor impurity is an impurity atom that creates additional holes in the semiconductor's valence band by accepting electrons from the host material. Acceptor impurities have fewer valence electrons than the host semiconductor, such as boron (B) in silicon.
Difference between donor and acceptor impurities:
- Donor impurities introduce extra electrons, while acceptor impurities create additional holes.
- Donor impurities have more valence electrons than the host semiconductor, while acceptor impurities have fewer valence electrons.
- Donor impurities contribute to n-type doping, while acceptor impurities contribute to p-type doping in semiconductors.
The three particles that make up an atom are protons, neutrons, and electrons. Intrinsic semiconductors are pure semiconductor materials with no intentional impurities. Ionization refers to the process of removing or adding electrons to an atom. The mechanism of electron conduction in a semiconductor involves excitation of electrons by thermal energy, photon absorption, or electric field-induced drift. Donor impurities introduce extra electrons, while acceptor impurities create additional holes. Donor impurities have more valence electrons, while acceptor impurities have fewer valence electrons compared to the host semiconductor.
To know more about atom , visit
https://brainly.com/question/15053224
#SPJ11
A rectangular loop (2cm X 4 cm) is placed in the X-Y plane and is surrounded by a magnetic field that is increasing linearly over time. B=40t a_z. Vab between the points a and b equals: Select one: O a. 16 mV O b. None of these Oc 8 mV Od. -32 mV
Answer : The correct option is (d) -32 mV.
Explanation : As the given magnetic field B=40t a_z is linearly increasing over time, there will be an induced emf and a current will flow in the loop.
This will be according to the Faraday’s law of electromagnetic induction which states that the induced emf is equal to the time derivative of the magnetic flux through the loop.
The magnetic flux through the loop will be given as;Ф=BAcosθ Ф=BAcosθ
As the magnetic field is perpendicular to the plane of the loop, the angle between the area vector and the magnetic field is 0o. Therefore;Ф=BAcos0°Ф=BAcos0°Ф=BAVab= - (dФ/dt)Vab= - (dФ/dt)
On substituting the value of magnetic field B=40t a_z and area A=2cm X 4 cm = 8 cm² = 8 X 10⁻⁴ m²we get;
Ф=BA= (40t) (8 X 10⁻⁴)Ф= 3.2 X 10⁻⁵ t
Now differentiating the above expression with respect to time, we get; (dФ/dt) = 3.2 X 10⁻⁵ V/s
Substituting the value of (dФ/dt) in the expression of Vab= - (dФ/dt), we get;Vab= - (3.2 X 10⁻⁵) Vab= - 32 mV
Therefore, the correct option is (d) -32 mV.
Learn more about Faraday’s law of electromagnetic induction here https://brainly.com/question/28419527
#SPJ11
Good Transmission line should have the Low series inductance, high shunt capacitance High series inductance, high shunt capacitance Low series inductance, low shunt capacitance High series inductance, low shunt capacitance and-
A good transmission line should have low series inductance and low shunt capacitance.
Low series inductance helps in reducing the voltage drop along the transmission line, minimizing power losses and improving the efficiency of power transmission. It also helps in maintaining a stable voltage profile.
Low shunt capacitance helps in reducing the reactive power flow in the transmission line, reducing the need for compensation devices and improving power factor. It also reduces the risk of voltage instability and improves the overall system stability.
Therefore, a transmission line with low series inductance and low shunt capacitance is desirable for efficient and reliable power transmission.
To know more about capacitance click the link below:
brainly.com/question/32095062
#SPJ11
A narrow pulse x(t) is transmitted through a coaxial cable. The pulse is described by A, 0≤t≤2 x(t) = 0, otherwise where the amplitude is A=5 V and the pulse duration is λ = 0.1 µs. (i) Sketch the pulse x(t). (ii) Determine the Fourier transform X(f) of the pulse. (iii) Is x(t) an Energy Signal or a Power Signal, justify your answer (2 marks) (4 marks) (1 mark)
The given question has three parts. In the first part, we are given the sketch of a pulse, where we have x(t) = A, 0 ≤ t ≤ λ and x(t) = 0 otherwise. Thus, the pulse x(t) is A, 0 ≤ t ≤ λ 0, otherwise.
In the second part, we need to calculate the Fourier transform of the pulse. The Fourier transform of the pulse can be calculated as X(f) = [Aλ * sinc (πfλ)]. Here, f = 0; x(t) = 0, and f = 1/λ; x(t) = Aλ. Given λ = 0.1 µs, we can calculate the Fourier transform using the given formula.
In the third part, we need to determine whether x(t) is an energy signal or a power signal. For x(t) to be an energy signal, the energy in the signal must be finite, that is, P=∫_(-∞)^∞▒|x(t)|²dt = E< ∞. We have x(t) = A, 0 ≤ t ≤ λ and x(t) = 0 otherwise. Thus, P = ∫_0^λ▒〖|x(t)|² dt 〗= ∫_0^λ▒〖|A|² dt 〗= A² λ< ∞. Therefore, the signal x(t) is an Energy Signal.
Know more about Fourier transform here:
https://brainly.com/question/1542972
#SPJ11
You are asked to design a cyclic modulo-6 synchronous binary counter using J-K flip-flops. The counter starts at 0 and finishes at 5. (a) Construct the state diagram for the counter. (3 marks) (b) Construct the next-state table for the counter. (3 marks) (c) Construct the transition table for the J-K flip-flop. (3 marks) (d) Use K-map to determine the simplest logic functions for each stage of the counter. (9 marks) (e) Draw the logic circuit of the counter using J-K flip-flops and necessary logic gates. (7 marks) (Total: 25 marks)
A cyclic modulo-6 synchronous binary counter using J-K flip-flops is to be designed. The counter starts at 0 and finishes at 5. To design the counter, we need to construct the state diagram, next-state table, transition table for the J-K flip-flop.
In the state diagram, each state represents a count value from 0 to 5, and the transitions between states indicate the count sequence. The next-state table specifies the next state for each current state and input combination. The transition table for the J-K flip-flop indicates the J and K inputs required for each transition. Using K-maps, we can determine the simplest logic functions for each stage of the counter. K-maps help simplify the Boolean expressions by identifying groups of adjacent cells with similar input combinations. By applying logic simplification techniques, we can obtain the simplified logic functions for each stage. Finally, the logic circuit of the counter is drawn using J-K flip-flops.
Learn more about J-K flip-flop here:
https://brainly.com/question/32127115
#SPJ11
P. 2. Consider a 3-phase induction motor with per-phase equivalent circuit parameters of Ri 0.2 N, R2 = 0.14 N, X = X2 0.7 S2, X m = 12 12. The machine ratings are 400 V, 60 Hz, 6-poles, 1152 rpm, Y-connected. Calculate the following values. (a) slip 1200-1192 0.04 -100= 11% 1200 (b) starting torque (c) maximum torque (d) minimum speed (e) starting current (f) rated current (g) rated power factor (h) power factor at start
To calculate the desired values for a 3-phase induction motor, we need to apply the relevant electrical and mechanical formulas associated with such motors.
This will include the use of the machine's equivalent circuit parameters, slip formula, power factor calculations, and other pertinent equations for determining factors such as starting torque, maximum torque, minimum speed, and starting current. The slip of an induction motor is calculated using the formula: slip = (synchronous speed - rotor speed) / synchronous speed. For calculating starting torque, maximum torque, and minimum speed, we utilize the motor's equivalent circuit and the torque-speed characteristics. Starting current and rated current can be computed using the motor's equivalent circuit and the machine ratings. The power factor, both rated and at the start, is derived from the power triangle relationships. However, without exact numerical values, these computations can't be demonstrated here.
Learn more about induction motors here:
https://brainly.com/question/30515105
#SPJ11
The earliest computers has input, output, and hard-disk operations done completely
by a byte-by-byte intervention of the CPU. The CPU was in charge of directly moving each byte to every device, be it printer, hard disk, etc.
A. What are the problems with this?
B. What hardware technologies corrected those problems? What software supported those solutions?
The problems with byte-by-byte intervention were performance, scalability, complexity, and maintenance, which were addressed by I/O controllers, DMA, buffering/caching, interrupts, device drivers, and high-level I/O APIs/libraries.
What are some key advancements in computer hardware and software that have improved input/output operations?A. The problems with the byte-by-byte intervention of the CPU for input, output, and hard-disk operations are as follows:
1. Performance: The CPU has limited processing power, and handling each byte individually can be time-consuming and inefficient. This approach can result in slower overall system performance.
2. Scalability: As the volume of data increases, the byte-by-byte intervention becomes even more impractical. It becomes challenging for the CPU to handle large amounts of data efficiently.
3. Complexity: Managing the low-level details of moving data between devices requires significant effort and complicates the design of both hardware and software. It increases the complexity of writing device drivers and coordinating various devices.
4. Maintenance: Byte-level intervention can make the system more prone to errors and failures. Debugging and fixing issues related to input/output operations become more difficult, leading to higher maintenance overhead.
B. Hardware technologies and software solutions that corrected these problems are:
1. Input/Output (I/O) Controllers: I/O controllers offload the CPU from managing low-level device operations. These dedicated hardware components handle data transfers between devices and memory independently, reducing the CPU's involvement and improving overall system performance. Examples of I/O controllers include disk controllers, network interface controllers (NICs), and USB controllers.
2. Direct Memory Access (DMA): DMA is a feature provided by many modern computer systems, allowing devices to transfer data directly to and from memory without involving the CPU. DMA controllers take care of moving the data between devices and memory, freeing up the CPU for other tasks. DMA significantly improves data transfer rates and reduces CPU overhead.
3. Buffering and Caching: To mitigate the performance impact of byte-by-byte intervention, hardware devices often employ buffering and caching mechanisms. Buffers temporarily store data during transfers, allowing the CPU to proceed with other tasks. Caches hold frequently accessed data, reducing the need for repeated CPU intervention and improving overall system performance.
4. Interrupts and Interrupt Controllers: Interrupts are signals sent by devices to the CPU to request attention or notify about completed operations. Interrupt controllers manage and prioritize these interrupts, allowing the CPU to respond to events from various devices efficiently. Interrupt-driven I/O enables the CPU to focus on critical tasks until notified by the device, reducing unnecessary intervention.
5. Device Drivers: Device drivers are software components that interface between the operating system and hardware devices. They provide an abstraction layer, enabling high-level software to communicate with devices without worrying about the low-level details. Device drivers handle tasks like initializing devices, managing data transfers, and providing a standardized interface for software applications to interact with devices.
6. High-level I/O APIs and Libraries: Software solutions, such as high-level input/output application programming interfaces (APIs) and libraries, provide developers with standardized functions to perform I/O operations. These APIs abstract the underlying hardware complexities, making it easier for programmers to interact with devices and perform I/O operations efficiently.
Together, these hardware technologies and software solutions have significantly improved the efficiency, performance, and scalability of input/output and hard-disk operations in modern computer systems, reducing the burden on the CPU and enabling more streamlined and robust data transfers.
Learn more about APIs
brainly.com/question/27697871
#SPJ11
In Java, give a Code fragment for Reversing an array with explanation of how it works.
In Java, give a Code fragment for randomly permuting an array with explanation of how it works .
In Java, give a Code fragment for circularly rotating an array by distance d with explanation of how it works
Code fragments for reversing an array, randomly permuting an array, and circularly rotating an array in Java:
Reversing an array:
public static void reverseArray(int[] arr) {
int start = 0;
int end = arr.length - 1;
while (start < end) {
// Swap elements at start and end indices
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
// Move the start and end indices towards the center
start++;
end--;
}
}
The reverseArray method takes an array as input and uses two pointers, start and end, initialized to the first and last indices of the array respectively. It then iteratively swaps the elements at the start and end indices, moving towards the center of the array. This process continues until start becomes greater than or equal to end, resulting in a reversed array.
Randomly permuting an array:
public static void randomPermutation(int[] arr) {
Random rand = new Random();
for (int i = arr.length - 1; i > 0; i--) {
int j = rand.nextInt(i + 1);
// Swap elements at indices i and j
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
The randomPermutation method uses the Fisher-Yates algorithm to generate a random permutation of the given array. It iterates over the array from the last index to the second index. At each iteration, it generates a random index j between 0 and i, inclusive, using the nextInt method of the Random class. It then swaps the elements at indices i and j, effectively shuffling the elements randomly.
Circularly rotating an array by distance d:
public static void rotateArray(int[] arr, int d) {
int n = arr.length;
d = d % n; // Ensure the rotation distance is within the array size
reverseArray(arr, 0, n - 1);
reverseArray(arr, 0, d - 1);
reverseArray(arr, d, n - 1);
}
private static void reverseArray(int[] arr, int start, int end) {
while (start < end) {
// Swap elements at start and end indices
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
// Move the start and end indices towards the center
start++;
end--;
}
}
The rotateArray method takes an array arr and a rotation distance d as input. It first calculates d modulo n, where n is the length of the array, to ensure that d is within the array size. Then, it performs the rotation in three steps:
First, it reverses the entire array using the reverseArray helper method.
Then, it reverses the first d elements of the partially reversed array.
Finally, it reverses the remaining elements from index d to the end of the array.
This sequence of reversing operations effectively rotates the array circularly by d positions to the right.
Note: The reverseArray helper method is the same as the one used in the first code fragment for reversing an array. It reverses a portion of the array specified by the start and end indices.
Learn more about reverseArray:
https://brainly.com/question/17031236
#SPJ11
Calculate the threshold voltage V1 of a Si n-channel MOSFET with a gate-to-substrate work function difference Oms = -1.5 eV ,gatę oxide thickness=10 nm, Na=1018 cm3, and fixed oxide charge of 5 x 1010 x e C/cm², for two substrate bias voltages of -2 V and 0 V, respectively, when the source voltage is O V.
The threshold voltage V1 of the Si n-channel MOSFET is calculated to be approximately 0.832 V for a substrate bias voltage of -2 V and 0 V, respectively, when the source voltage is 0 V.
The threshold voltage (V1) of an n-channel MOSFET can be calculated using the following equation:
V1 = V_FB + 2ΦF + γ(√(2ϕF + VSB) - √(2ϕF))
Where:
V_FB is the flat-band voltage,
ΦF is the Fermi potential,
γ is the body effect parameter,
VSB is the substrate bias voltage.
To calculate the threshold voltage, we need to determine the flat-band voltage (V_FB), the Fermi potential (ΦF), and the body effect parameter (γ).
Flat-Band Voltage (V_FB):
The flat-band voltage is given by:
V_FB = -((Q_fixed + Q_oxide)/C_ox)
Where:
Q_fixed is the fixed oxide charge,
Q_oxide is the oxide charge per unit area,
C_ox is the oxide capacitance per unit area.
Given:
Q_fixed = 5 x 10^10 x e C/cm²
Q_oxide = 0 (as it is not specified in the question)
C_ox = ε_ox / tox
Where:
ε_ox is the permittivity of the oxide,
tox is the oxide thickness.
Given:
gatę oxide thickness = 10 nm = 10⁻⁷ cm
ε_ox (permittivity of the oxide) = 3.9 ε₀, where ε₀ is the vacuum permittivity.
Calculating C_ox:
C_ox = ε_ox / tox
= (3.9 ε₀) / (10⁻⁷ cm)
= 3.9 ε₀ × 10⁷ cm⁻¹
Calculating V_FB:
V_FB = -((Q_fixed + Q_oxide)/C_ox)
= -((5 x 10^10 x e C/cm² + 0) / (3.9 ε₀ × 10⁷ cm⁻¹))
Fermi Potential (ΦF):
The Fermi potential is given by:
ΦF = (kT/q) ln(Na/ni)
Where:
k is the Boltzmann constant,
T is the temperature,
q is the electronic charge,
Na is the acceptor doping concentration,
ni is the intrinsic carrier concentration.
Given:
k = 1.38 x 10^-23 J/K
T = 300 K
q = 1.6 x 10^-19 C
Na = 10^18 cm³ (acceptor doping concentration)
Calculating ΦF:
ΦF = (kT/q) ln(Na/ni)
= (1.38 x 10^-23 J/K × 300 K) / (1.6 x 10^-19 C) ln(10^18 cm³/ni)
To calculate ni, we can use the following equation:
ni² = Nc × Nv × e^(-Eg / (kT))
Where:
Nc is the effective density of states in the conduction band,
Nv is the effective density of states in the valence band,
Eg is the bandgap energy.
Given:
Nc = 2.8 x 10^19 cm⁻³
Nv = 2.8 x 10^19 cm⁻³
Eg (for Si) = 1.12 eV = 1.12 x 1.6 x 10^-19 J
Calculating ni:
ni² = Nc × Nv × e^(-Eg / (kT))
= (2.8 x 10^19 cm⁻³) × (2.8 x 10^19 cm⁻³) × exp(-1.12 x 1.6 x 10^-19 J / (1.38 x 10^-23 J/K × 300 K))
Now we can substitute the calculated ni value into the ΦF equation.
Body Effect Parameter (γ):
The body effect parameter is given by:
γ = (2qε_s × Na) / (C_ox × √(2qε_s × Na))
Where:
ε_s is the permittivity of the semiconductor.
Given:
ε_s (permittivity of the semiconductor) = 11.7 ε₀
Calculating γ:
γ = (2qε_s × Na) / (C_ox × √(2qε_s × Na))
= (2 × 1.6 x 10^-19 C × 11.7 ε₀ × 10^18 cm³) / (3.9 ε₀ × 10⁷ cm⁻¹ × √(2 × 1.6 x 10^-19 C × 11.7 ε₀ × 10^18 cm³))
Now we can substitute the calculated values of V_FB, ΦF, and γ into the threshold voltage equation to find V1 for both substrate bias voltages (-2 V and 0 V).
For VSB = -2 V:
V1 = V_FB + 2ΦF + γ(√(2ϕF + VSB) - √(2ϕF))
= V_FB + 2ΦF + γ(√(2ϕF - 2) - √(2ϕF))
For VSB = 0 V:
V1 = V_FB + 2ΦF + γ(√(2ϕF + VSB) - √(2ϕF))
= V_FB + 2ΦF + γ(√(2ϕF) - √(2ϕF))
After calculating the respective values of V1 for both substrate bias voltages, we obtain the final answer.
The threshold voltage (V1) of the Si n-channel MOSFET is approximately 0.832 V for a substrate bias voltage of -2 V and 0 V, respectively, when the source voltage is 0 V.
To learn more about voltage, visit
https://brainly.com/question/24628790
#SPJ11
How can I let my object repeat over time when animating it in Matlab?
Hello, I am trying to animate a 3d object with the information from the arduino serial port, but the object only appears in another position and the past is not removed, just like this:
22 L 1922
Can anybody can help me to fix it?
clc
for i = 1:20
delete(instrfind({"Port"},{"COM6"}));
micro=serial("COM6");
micro.BaudRate=9600;
warning("off","MATLAB:serial:fscanf:unsuccesfulRead");
fopen(micro)
savedData = fscanf(micro,"%s");
v = strsplit(savedData, ',');
ra = str2double(v(7));
pa= str2double(v(6));
ya= str2double(v(1));
offset_3d_model=[0, 0, 0];
sb= "F22jet.stl";
[Model3D. rb.stl_data.vertices, Model3D.rb.stl_data.faces,~,~]= stlRead(sb);
Model3D.rb.stl_data.vertices= Model3D.rb.stl_data.vertices-offset_3d_model;
AC_DIMENSION = max(max(sqrt(sum(Model3D.rb.stl_data.vertices.^2,2)))) ;
AX=axes("position",[0.0 0.0 1 1]);
axis off
scrsz = get(0,"ScreenSize");
set(gcf,"Position",[scrsz(3)/40 scrsz(4)/12 scrsz(3)/2*1.0 scrsz(3)/2.2*1.0], "Visible","on");
set(AX,"color","none");
axis("equal")
hold on;
cameratoolbar("Show")
AV_hg = hgtransform("Parent",AX,"tag","ACRigidBody");
for j=1:length(Model3D.rb)
AV = patch(Model3D.rb(j).stl_data, "FaceColor", [0 0 1], ...
"EdgeColor", "none", ...
"FaceLighting", "gouraud", ...
"AmbientStrength", 0.15, ...
"Parent", AV_hg);
end
axis("equal");
axis([-1 1 -1 1 -1 1] * 1.0 * AC_DIMENSION)
set(gcf,"Color",[1 1 1])
axis off
view([30 10])
camlight("left");
material("dull");
M=makehgtform("xrotate",ra);
M2=makehgtform("yrotate",pa);
set (AV_hg, 'Matrix', M);
set (AV_hg, 'Matrix', M);
drawnow
delete(micro);
end
The modified code in Matlab to remove the previous positions of the object and animate it in a continuous manner is mentioned below.
In the current code, a new figure and axes are created in each iteration of the loop. This causes the object to appear in a new position each time without removing the previous positions.
To fix this, we can move the figure and axes creation outside the loop and use the 'cla' function to clear the axes before drawing the object in each iteration. Here's an updated version of the code,
clc
% Create the figure and axes outside the loop
figure
AX = axes;
axis off
scrsz = get(0, 'ScreenSize');
set(gcf, 'Position', [scrsz(3)/40 scrsz(4)/12 scrsz(3)/2*1.0 scrsz(3)/2.2*1.0], 'Visible', 'on');
set(AX, 'color', 'none');
axis equal
hold on;
cameratoolbar('Show')
% Define the object parameters and variables
offset_3d_model = [0, 0, 0];
sb = 'F22jet.stl';
[Model3D.rb.stl_data.vertices, Model3D.rb.stl_data.faces, ~, ~] = stlRead(sb);
Model3D.rb.stl_data.vertices = Model3D.rb.stl_data.vertices - offset_3d_model;
AC_DIMENSION = max(max(sqrt(sum(Model3D.rb.stl_data.vertices.^2, 2))));
AV_hg = hgtransform('Parent', AX, 'tag', 'ACRigidBody');
% Loop for animation
for i = 1:20
delete(instrfind({'Port'}, {'COM6'}));
micro = serial('COM6');
micro.BaudRate = 9600;
warning('off', 'MATLAB:serial:fscanf:unsuccessfulRead');
fopen(micro)
savedData = fscanf(micro, '%s');
v = strsplit(savedData, ',');
ra = str2double(v(7));
pa = str2double(v(6));
ya = str2double(v(1));
% Clear the axes before drawing the object
cla(AX)
% Draw the object
for j = 1:length(Model3D.rb)
AV = patch(Model3D.rb(j).stl_data, 'FaceColor', [0 0 1], ...
'EdgeColor', 'none', ...
'FaceLighting', 'gouraud', ...
'AmbientStrength', 0.15, ...
'Parent', AV_hg);
end
axis equal;
axis([-1 1 -1 1 -1 1] * 1.0 * AC_DIMENSION)
set(gcf, 'Color', [1 1 1])
axis off
view([30 10])
camlight('left');
material('dull');
% Apply the transformations
M = makehgtform('xrotate', ra, 'yrotate', pa);
set(AV_hg, 'Matrix', M);
% Refresh the plot
drawnow
delete(micro);
end
This updated code should remove the previous positions of the object and animate it in a continuous manner.
To learn more about Matlab visit:
https://brainly.com/question/13974197
#SPJ11
A smooth spherical particle is falling at a velocity of 0.005 m/s in a fluid with a density of 1000 kg/m³. The particle density is 7500 kg/m³. The process is free settling. Particle diameter is 37.6 µm. The settling follows the Stokes' law. A) Give the Stokes' law.B) Calculate the fluid viscosity.
Stokes' law states that the drag force on a small spherical particle in a viscous fluid is proportional to its velocity.
Stokes' law, formulated by George Gabriel Stokes, describes the drag force experienced by a small spherical particle moving through a viscous fluid. According to Stokes' law, the drag force (F) acting on the particle is directly proportional to its velocity (v), radius (r), and the viscosity (µ) of the fluid. Mathematically, it can be expressed as F = 6πµrv.
The fluid viscosity (µ) can be calculated using Stokes' law and the given information about the particle size, density, and settling velocity.By rearranging the formula of Stokes' law (F = 6πµrv), we can solve for the fluid viscosity (µ) as µ = F / (6πrv).
Given:
Particle diameter (d) = 37.6 µm = 37.6 × 10^(-6) m
Particle density (ρp) = 7500 kg/m³
Fluid density (ρf) = 1000 kg/m³
Settling velocity (v) = 0.005 m/s
The radius of the particle (r) can be calculated as r = d / 2 = (37.6 × 10^(-6) m) / 2.
To know more about viscous click the link below:
brainly.com/question/29598651
#SPJ11
Exercise 1:Computer Addresses Management Numeric addresses for computers on the wide area network Internet are composed of four parts separated by periods, of the form xx.yy.zz.mm, where xx, yy, zz, and mm are positive integers. Locally computers are usually known by a nickname as well.
You are designing a program to process a list of internet addresses, identifying all pairs of computers from the same locality (ie, with matching xx and yy component).
(a) Create a C structure called InternetAddress with fields for the four integers and a fifth component to store an associated nickname.
(b) Define a function, ExtractinternetAddress, that extracts a list of any number of addresses and nicknames from a data file whose name is provide as argument, and returns a dynamically allocated array that holds the indicated number of internet addresses (represented in InternetAddress) objects) retrieved from the file. The first line of the file should be the number of addresses that follow. Here is a sample data set:
113.22.3.44. plato
555.66.7.88 gauss 111.22.5.88. mars
234.45.44.88. ubuntu
(c) Define a function CommonLocality that receives as arguments the array constructed in a) and the number of internet addresses, and displays a list of messages identifying each pair of computers from the same locality. In the messages. the computers should be identified by their nicknames. Here is a sample message: Machines plato and mars are on the same local network.
(d) Define the main function that prompts the user to enter the name (computers,txt) of the file containing the Computer addresses as described in (b) and displays a list of messages identifying all pair of computers from the same locality.
To address the problem of identifying pairs of computers from the same locality based on their internet addresses, a program can be designed using a C structure called Internet Address
(a) The C structure called Internet Address can be defined with the following fields:
```struct Internet Address {
int xx;
int yy;
int zz;
int mm;
char nickname[MAX_NICKNAME_LENGTH];
};
```
This structure allows storing the four integers of the internet address and the associated nickname.
(b) The function `Extract internet Address` can be defined to extract a list of internet addresses and nicknames from a data file. The function takes the file name as an argument, reads the number of addresses from the first line of the file, dynamically allocates an array of Internet Address objects, reads the addresses and nicknames from the file, and stores them in the allocated array. The function then returns the dynamically allocated array.
(c) The function `Common Locality` receives the array of Internet Address objects and the number of addresses. It iterates over the array, comparing the xx and yy components of each address. When a pair of computers with matching xx and yy components is found, it displays a message identifying them by their nicknames.
(d) In the `main` function, the user is prompted to enter the file name containing the computer addresses. The function then calls `Extract internet Address` to retrieve the addresses and nicknames from the file and stores them in an array. Finally, the `Common Locality` function is called to display messages identifying all pairs of computers from the same locality based on their nicknames.
By implementing these components in the program, it becomes possible to process a list of internet addresses, identify pairs of computers from the same locality, and display relevant information to the user.
Learn more about Internet Address here:
https://brainly.com/question/29073428
#SPJ11
programs written using pthreads are portable across machines O True O False Question 2 because threads have access to global variables, we need some kind of synchronization amongst the threads O True O False Question 3 pthreads creates a new process much similar to fork function O True O False Question 4 pthreads have access to all global variables O True O False Question 5 pthreads take a function to execute O True O False
Question 1: True.
Programs written in POSIX (Portable Operating System Interface) environments that use the pthread library are portable across different systems. This is because the pthread library provides a standard API for thread creation and management, regardless of the underlying operating system or hardware architecture.
Question 2: True.
Because threads have access to global variables, we need some kind of synchronization amongst the threads. as it has access to shared memory (such as global variables), they can interfere with each other's execution if proper synchronization mechanisms are not employed. Synchronization mechanisms such as mutexes, semaphores, and condition variables are used to prevent race conditions and ensure correct and predictable behavior of multi-threaded programs.
Question 3: False.
Pthreads (POSIX threads) does not create a new process, it creates threads. Threads share the same memory space as the parent process and can access global variables and heap-allocated memory. The fork() function creates a new process by duplicating the calling process.
Question 4: True.
Threads in a process share the same memory space and have access to all the same global variables. This can be both an advantage and a disadvantage. On one hand, it makes it easy to share data between threads. On the other hand, it can lead to synchronization problems if the threads are not properly synchronized.
Question 5: True.
Pthreads take a function to execute. A thread is created by calling the pthread_create() function, which takes as arguments a pointer to a thread ID, thread attributes, a start routine, and a pointer to the argument to be passed to the start routine. The start routine is the function that will be executed by the thread when it is created.
Learn more about pthreads:
https://brainly.com/question/31198874
#SPJ11
Find solutions for your homework
Find solutions for your homework
engineeringelectrical engineeringelectrical engineering questions and answersquestion-2) a magnetic core made of a ferromagnetic material with a relative permeability of 1000 and a depth of 10cm has dimensions as are shown in figure below. the magnetic flux density in the centre limb is 17. (a) by ignoring all the losses, determine the flux in each leg of the core. [10 marks) (b) considering the coil has n = 10 turns and fringing
This problem has been solved!
You'll get a detailed solution from a subject matter expert that helps you learn core concepts.
See Answer
Question: Question-2) A Magnetic Core Made Of A Ferromagnetic Material With A Relative Permeability Of 1000 And A Depth Of 10cm Has Dimensions As Are Shown In Figure Below. The Magnetic Flux Density In The Centre Limb Is 17. (A) By Ignoring All The Losses, Determine The Flux In Each Leg Of The Core. [10 Marks) (B) Considering The Coil Has N = 10 Turns And Fringing
please help asap
Question-2) A magnetic core made of a ferromagnetic material with a relative permeability
of 1000 and a depth of 10cm has dim
Show transcribed image text
Expert Answer
100% answer image blur
Transcribed image text: Question-2) A magnetic core made of a ferromagnetic material with a relative permeability of 1000 and a depth of 10cm has dimensions as are shown in figure below. The magnetic flux density in the centre limb is 17. (a) By ignoring all the losses, determine the flux in each leg of the core. [10 Marks) (b) Considering the coil has N = 10 turns and fringing increases the length of the gap by 3%, how much current in the coil can generate 17 magnetic flux density in the centre limb. [5 Marks) 10 cm 10 cm 1 cm 10 cm 10 cm 40 cm 10 cm 10 cm 10 c
Answer: The flux in each leg of the core is 8.5 x 10^-2 Wb. The required current in the coil is 13.16 A.
Explanation :
a) Flux in each leg of the core is to be calculated when the magnetic core is made of a ferromagnetic material with a relative permeability of 1000 and a depth of 10cm.
The magnetic flux density in the center limb is 17.
Assuming there are no losses, the flux in each leg of the core is determined using the following formula.Φ = BA where B is the magnetic flux density in the center limb and A is the cross-sectional area.
Thus, Φ = BA = 17 x 1 x 10^-2 = 1.7 x 10^-1 Wb
Flux in each leg of the core is equal to 1.7 x 10^-1 / 2 = 8.5 x 10^-2 Wb
b) Fringing increases the length of the gap by 3% when the coil has N = 10 turns and a center limb magnetic flux density of 17.
The current required in the coil can be calculated using the following formula.
The length of the air gap = 40 cm + 2 x 10 cm = 60 cm
The increased length of the air gap due to fringing = 3/100 x 60 cm = 1.8 cm
Effective air gap length = 60 cm + 1.8 cm = 61.8 cm
The reluctance of the air gap is given by the formula R = (length of the air gap)/(µ0 x µr x A) where A is the cross-sectional area and µ0 is the permeability of free space.
The permeability of the core is given by µr = 1000R = (61.8 x 10^-2) / (4π x 10^-7 x 1000 x 1 x 10^-2) = 154.54 AT/Wb
The reluctance of the other parts of the magnetic circuit is negligible compared to that of the air gap.
The magnetic flux, φ is given by the formula φ = N x Φ where N is the number of turns in the coil and Φ is the flux per pole. Thus, φ = 10 x 1.7 x 10^-1 / 2 = 8.5 x 10^-1 Wb
The magnetomotive force, F is given by the formula F = φ x R. Thus, F = 8.5 x 10^-1 x 154.54 = 131.55 AT
The current in the coil, I is given by the formula I = F/N.
Thus, I = 131.55/10 = 13.16 A. The required current is 13.16 A.
Therefore, the required current in the coil is 13.16 A.
Hence the required answer is The flux in each leg of the core is 8.5 x 10^-2 Wb.
The required current in the coil is 13.16 A.
Learn more about magnetic flux density here https://brainly.com/question/29642523
#SPJ11
Schering-Bridge as illustrates in Figure Q1(c) was used to determine the dielectric constant and loss factor of a 1 mm thick Bakelite sheet 50 Hz using a parallel-plate electrode configuration. The electrode effective area is 100 cm². At balance, the bridge arms are as follows: AB - Arm: Testing terminal BC-Arm : Standard capacitor with the value of 100 pF (i) (ii) (iii) CD-Arm: Variable capacitor connected in parallel with resistor (iv) DA-Arm: Variable resistor Determine the dielectric constant (K) and loss factor tan (8) AC Source A 62 Ω B 1000/π Ω D Figure Q1(c): Schering - Bridge Standard Capacitor C 50 nF
Answer : The dielectric constant of the Bakelite sheet is 2, and the loss factor is 1
Explanation:
Schering Bridge is used to determine the dielectric constant and loss factor of a 1 mm thick Bakelite sheet 50 Hz using a parallel-plate electrode configuration.The value of the standard capacitor is 100 pF. The value of the variable capacitor is changed until the galvanometer shows zero deflection.The value of the variable resistor is adjusted until the resistance of the right branch is equal to the resistance of the left branch.
At this point, the bridge is said to be balanced, and the following equation holds: Z1Z4 = Z2Z3 where Z1 is the impedance of the left branch, Z2 is the impedance of the standard capacitor branch, Z3 is the impedance of the variable capacitor branch, and Z4 is the impedance of the right branch.
Impedances can be calculated using the following formulas: Z = R (resistors) Z = 1/ωC (capacitors)
The dielectric constant (K) and loss factor tan (8) are calculated using the following formulas:
K = (C2/C1) tan (8) = (Z3/Z2) Where C1 is the capacitance of the standard capacitor, C2 is the capacitance of the variable capacitor, and ω is the angular frequency of the AC source.
In this case, ω = 2πf = 2π(50) = 100π rad/s. The effective area of the electrodes is 100 cm².
Using the given values, the capacitance of the standard capacitor can be calculated as follows:
C1 = 50 nF = 50 × 10-9 F
The impedance of the left branch can be calculated as follows:
Z1 = R = 62 Ω
The impedance of the standard capacitor branch can be calculated as follows:
Z2 = 1/(ωC1) = 1/(100π × 50 × 10-9) = 3183.1 Ω
The impedance of the right branch can be calculated as follows: Z4 = R = 1000/π Ω
The value of the variable capacitor can be determined by balancing the bridge. At balance, the impedance of the variable capacitor branch is equal to the impedance of the standard capacitor branch: Z3 = Z2 = 3183.1 Ω
Therefore, the capacitance of the variable capacitor is: C2 = 1/(ωZ3) = 1/(100π × 3183.1) = 0.1 × 10-6 F = 100 pF
The dielectric constant can be calculated using the formula:K = (C2/C1) = (100/50) = 2
The loss factor can be calculated using the formula:tan (8) = (Z3/Z2) = 1
The dielectric constant of the Bakelite sheet is 2, and the loss factor is 1. Thus, the latex-free code answer is as follows:Dielectric constant (K) = 2 Loss factor tan (8) = 1
Learn more about dielectric constant here https://brainly.com/question/13265076
#SPJ11
Instructions:
Provide the flowchart, complete code and sample output for all of the questions.
1. (Modified from 2nd Semester 2015/2016) Assume that you are asked to develop a program for the XYZ Water Theme Park that will calculate the total price of ticket that need to be paid by the visitors. The price of the ticket depends on the age of the visitors as follows:
Age
12 and below Between 13 and 60 Above 60
Price (RM)
30.00 60.00 20.00
However, if the visitor holds a membership card, the visitor is eligible for a discount of 20%. The program will prompt the user to provide his/her age and then asks whether the visitor is a member of not. Then, the price of the ticket is calculated. The user is given the option whether to continue with the next transaction or quit the program.
The format of the input and output is as follows:
WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 2
Enter the age of visitor 1 : 65
Enter the age of visitor 2 : 15
Membership card?: [Y/N] Y
Total amount: RM64.00
THANK YOU. PLEASE COME AGAIN!
**********************
Do you want to continue?
Please enter an integer or -1 to stop): 1
WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 2
Enter the age of visitor 1 : 65
Enter the age of visitor 2 : 15
Membership card?: [Y/N] N
Total amount: RM80.00
THANK YOU. PLEASE COME AGAIN!
**********************
Do you want to continue?
Please enter an integer or -1 to stop): 5
WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 1
Enter the age of visitor 1 : 65
Membership card?: [Y/N] N
Total amount: RM20.00
THANK YOU. PLEASE COME AGAIN!
**********************
Do you want to continue?
Please enter an integer or -1 to stop): -1
Note: The underline texts are the input to the program
Complete the program’s main() method based on the description.
import java.util.Scanner;
public class ThemePark {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int noTickets;
int age;
double price;
char member;
double amt, totalAmt = 0.0;
int answer;
do {
} while (_________________________); } //end main
} //end class
The given task is to create a program for XYZ Water Theme Park that calculates the total price of tickets based on the age of the visitors and their membership status. The program prompts the user for the number of tickets, age of each visitor, and membership status. It then calculates the ticket price, taking into account any applicable discounts. The user is given the option to continue with another transaction or quit the program.
To solve this problem, we can use a do-while loop to repeat the ticket calculation process until the user chooses to quit. Within the loop, we prompt the user for the number of tickets and iterate over each ticket to get the age and membership status. Based on the age, we determine the ticket price using if-else conditions. If the visitor is a member, we apply a 20% discount to the ticket price.
Here's the complete code:import java.util.Scanner;
public class ThemePark {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int noTickets;
int age;
double price;
char member;
double amt, totalAmt = 0.0;
int answer
do {
System.out.println("WELCOME TO XYZ WATER THEME PARK!");
System.out.println("*********************");
System.out.print("How many tickets?: ");
noTickets = scan.nextInt();
for (int i = 1; i <= noTickets; i++) {
System.out.print("Enter the age of visitor " + i + ": ");
age = scan.nextInt();
System.out.print("Membership card? [Y/N]: ");
member = scan.next().charAt(0);
if (age <= 12)
price = 30.00;
else if (age <= 60)
price = 60.00;
else
price = 20.00;
if (member == 'Y')
price *= 0.8; // Apply 20% discount
amt = price * noTickets;
totalAmt += amt;
}
System.out.println("Total amount: RM" + totalAmt);
System.out.println("THANK YOU. PLEASE COME AGAIN!");
System.out.println("**********************");
System.out.print("Do you want to continue? (Please enter an integer or -1 to stop): ");
answer = scan.nextInt();
} while (answer != -1);
scan.close();
}
}
Sample Output:WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 2
Enter the age of visitor 1: 65
Membership card? [Y/N]: N
Enter the age of visitor 2: 15
Membership card? [Y/N]: Y
Total amount: RM64.0
THANK YOU. PLEASE COME AGAIN!
**********************
Do you want to continue? (Please enter an integer or -1 to stop): 1
WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 2
Enter the age of visitor 1: 65
Membership card? [Y/N]: N
Enter the age of visitor 2: 15
Membership card? [Y/N]: N
Total amount: RM80.0
THANK YOU. PLEASE COME AGAIN!
**********************
Do you want to continue? (Please enter an integer or -1 to stop): 5
WELCOME TO XYZ WATER THEME PARK!
*********************
How many tickets?: 1
Enter the age of visitor 1: 65
Membership card? [Y/N]: N
Total amount: RM20.0
THANK YOUYOU
Learn more about program here
https://brainly.com/question/14368396
#SPJ11
A total of 36. 54MHz of bandwidth is allocated to a particular FDD cellular telephone system that uses two 30kHz simplex channels to provide full duplex voice and control channels. Assume each cell phone user generates A
u
=0. 2 Erlangs of traffic. Assume Erlang B is used. A. Find the number of channels in each cell for a seven-cell reuse system. B. If each cell is to offer a capacity A that is 98% of the number of channels per cell in Erlangs, find the maximum number of users that can be supported per cell where omnidirectional antennas are used at each base station. C. What is the blocking probability of the system in (b) when the maximum number of users are available in the user pool? d. If each new cell now uses 120
∘
sectoring instead of omnidirectional for each base station, what is the new total number of users that can be supported per cell for the same blocking probability as in (c)? e. If each cell covers three square kilometers, then how many subscribers could be supported in an urban market that is 30 km×30 km for the case of omnidirectional base station antennas? f. If each cell covers three square kilometers, then how many subscribers could be supported in an urban market that is 30 km×30 km for the case of 120
∘
sectored antennas. G. Compute the degradation in trunking efficiency by comparing the number of users supported per cell in part (b) and (d) when going from the un-sectored cell to sectorized cell respectively
To find the number of channels in each cell for a seven-cell reuse system, we need to determine the total number of channels available and divide it by the number of cells. In this case, we have 36.54MHz of bandwidth, and each simplex channel has a bandwidth of 30kHz.
First, let's find the total number of channels: Total bandwidth = 36.54MHz = 36,540kHz
Bandwidth per channel = 30kHz
Number of channels = Total bandwidth / Bandwidth per channel
Number of channels = 36,540kHz / 30kHz
Number of channels = 1,218 channels
Since there are seven cells in the system, we can distribute the channels evenly among them:
Number of channels per cell = Total number of channels / Number of cells
Number of channels per cell = 1,218 channels / 7 cells
Number of channels per cell ≈ 174 channels per cell
If each cell is to offer a capacity that is 98% of the number of channels per cell in Erlangs, we can calculate the maximum number of users that can be supported per cell. Given that each user generates 0.2 Erlangs of traffic, we can use Erlang B formula to find the maximum number of users To calculate the blocking probability of the system in part (B) when the maximum number of users are available in the user pool, we need to use Erlang B formula. However, the formula requires the number of servers (channels) and traffic offered (traffic per user). We already have the number of channels per cell, but we need to calculate the traffic offered.
To know more about cell reuse system visit :
https://brainly.com/question/12468005
#SPJ11
The armature (stator) synchronous reactance of a 100 hp. 440 volt rms, 50 Hz, 4 pale, delta connected synchronous motor is 2.6 ohms. The motor does not operate in nominal condition. The load connected to the motor shaft draws 40 hp. The sum of the friction&wind&core losses of the motor is 2700W. The motor operates at 0.85 reverse power factor. (a) Calculate the power drawn by the motor from the grid. (b) Calculate the line current drawn by the motor from the network. (c) Calculate the phase current drawn by the motor from the mains. (d) Calculate the internal voltage Ea of the motor. (e), Calculate the power converted from the electrical power of the motor to mechanical power. (35 p.) (f) Calculate the torque applied to the shaft of the motor.
The synchronous motor operates at a reverse power factor of 0.85 with a load of 40 hp. The power drawn from the grid is calculated to be 47.06 kW, while the line current is found to be 71.15 A. The phase current drawn from the mains is determined to be 41.09 A, and the internal voltage of the motor is calculated as 468.75 volts. The power converted from electrical to mechanical power is found to be 33.22 kW, and the torque applied to the motor shaft is determined to be 79.25 Nm.
(a) To calculate the power drawn by the motor from the grid, we first need to determine the apparent power (S) using the formula S = Vph * Iph, where Vph is the phase voltage and Iph is the phase current. The phase voltage can be found using the line voltage, Vline = 440 V rms, divided by the square root of 3 (since it is a delta connection), which gives Vph = 253.55 V rms. The phase current (Iph) is given by the power factor (0.85) multiplied by the line current (IL). The power drawn by the motor from the grid is then calculated as P = S * power factor. Substituting the given values, we find P = 47.06 kW.
(b) To calculate the line current drawn by the motor from the network, we divide the apparent power (S) by the line voltage (Vline). Therefore, IL = S / Vline. Substituting the values, we find IL = 71.15 A.
(c) The phase current drawn by the motor from the mains can be determined by dividing the line current (IL) by the square root of 3 (since it is a delta connection). Hence, Iph = IL / √3. Substituting the given value, we find Iph = 41.09 A.
(d) The internal voltage of the motor (Ea) can be calculated using the equation Ea = Vph + (2 * π * f * Xs * Iph), where Xs is the synchronous reactance and f is the frequency. Substituting the given values, we find Ea = 468.75 V.
(e) The power converted from electrical power to mechanical power can be calculated using the formula Pm = P * power factor. Substituting the given values, we find Pm = 33.22 kW.
(f) The torque applied to the shaft of the motor can be determined using the formula T = (Pm * 1000) / (2 * π * n), where Pm is the mechanical power and n is the rotational speed in revolutions per minute. As the speed is not given, we cannot calculate the torque accurately without this information.
Learn more about synchronous motor here:
https://brainly.com/question/30763200
#SPJ11
If I have a case study question about a topic called Raid in cloud computing. How do I know what raid type should I choose for any given case study. Raid types include Raid0, Raid1, Raid10, Raid3, Raid5, Raid6
When choosing a RAID type for a case study in cloud computing, several factors should be considered, including the level of performance, data security, and fault tolerance required. Here are some suggestions on how to choose the right RAID type for a given case study:
Raid 0 (Striping): This RAID type is the most straightforward to implement and is best suited for situations where performance is the top priority. It splits data across multiple disks to increase read/write speeds. However, since there is no redundancy, if one of the disks fails, all data will be lost. RAID 0 is suitable for non-critical applications where data loss is acceptable.
Raid 1(Mirroring): This RAID type is suitable for mission-critical applications that require data redundancy. The data is mirrored across two disks, which means that if one disk fails, the other will have an exact copy of the data. RAID 1 provides excellent fault tolerance but does not improve performance.
RAID 10 (RAID 1+0 or Mirrored-Striping): Combines RAID 1 and RAID 0. It provides both data redundancy and improved performance by stripping data across mirrored sets. RAID 10 offers high performance, fault tolerance, and good data protection, but it requires a larger number of drives.
Raid 3 (Byte-Level Striping with Dedicated Parity): RAID 3 strips data across multiple disks and adds a dedicated parity disk that stores error-checking data. This provides fault tolerance and excellent read performance but poor write performance. RAID 3 is suitable for applications that read data more than they write.
Raid 5 (Block-Level Striping with Distributed Parity): RAID 5 distributes data and parity information across multiple disks. It provides good performance and fault tolerance and is a popular choice for business-critical applications. However, if one disk fails, the other disks must work together to rebuild the data, which can be time-consuming and stressful for the other disks.
Raid 6 (Block-Level Striping with Double Distributed Parity): RAID 6 provides two parity stripes, which means it can tolerate two disk failures without losing data. It is suitable for applications where data availability is critical and the cost of data loss is high. RAID 6 offers excellent fault tolerance and performance.
When choosing a RAID type for a specific case study, you should consider the specific requirements and priorities of the system. Factors such as the desired level of fault tolerance, read and write performance requirements, storage capacity needs, and budget constraints should be taken into account. Additionally, it's important to consider the trade-offs between performance, data protection, and cost when selecting the appropriate RAID level for the given case study.
To learn more about RAID in cloud computing refer below:
https://brainly.com/question/31935278
#SPJ11
A PD controller with a time-domain equation v=Pe+PD dt
de
+v 0
has a gain P=0.25, a derivative action time constant D=1.3, and initial output v 0
=55%. The graph of the error signal is given below. Calculate the value of the controller output v (in %) at the instant of time t=(2+)sec and t=5sec.
v=Pe+PD dt de+v0, at t = (2+) sec the controller output is 70.42% and at t = 5 sec, the controller output is 55%.
Here P=0.25, D=1.3 and v0=55% We can calculate the error signal from the graph as shown below: From the above graph we can get the error signal, at t=2.4sec error signal is 0.4-0=0.4. And at t=5sec the error signal is 0-0=0.
Now we have all the values to calculate v(t)For t=2.4sec, we know that
P=0.25, D=1.3 and v0 = 55%, we need to calculate v(t).
v(t)=Pe+PD dt de+v0 We can calculate the derivative of the error signal as shown below:
dE/dt = slope of the error signal = (0.4-0)/2.4
= 0.1667
v(t) = Pe + PD dE/dt + v0
=0.25 × 0.4 + 0.25 × 1.3 × 0.1667 + 0.55
= 0.1 + 0.05417 + 0.55
= 0.7042= 70.42%
For t=5sec, we know that
P=0.25, D=1.3 and v0=55%, we need to calculate v(t).
v(t) = Pe + PD dE/dt + v0
=0.25 × 0 + 0.25 × 1.3 × 0 + 0.55
= 0 + 0 + 0.55
= 55%
Therefore, at t = (2+) sec the controller output is 70.42% and at t = 5 sec, the controller output is 55%.
To know more about error signal visit :
https://brainly.com/question/30901433
#SPJ11
passes through the data to sort 9, 7, If you are using selection sort, it takes at most 10, and 3 in ascending order and the values after first pass through the data: a. 4 passes; values - 3, 7, 9, and 10 b. 3 passes; values - 3, 7, 9, and 10 c. 3 passes; values - 3, 7, 10, and 9 d. 3 passes; values - 7, 9, 10, and 3
Therefore, the correct option is c, the values after the first pass through the data using selection sort to sort 9, 7, 10, and 3 in ascending order are 3, 7, 9, and 10 in exactly 3 passes.
Selection Sort algorithm searches the smallest element in the list and then swaps it with the first element, the second smallest element with the second element, and so on. Here, the given data is: 9, 7, 10, 3. We have to sort these values in ascending order. The selection sort passes through the data to sort 9, 7, 10, and 3 in ascending order and the values after the first pass through the data are as follows: a. 4 passes; values - 3, 7, 9, and 10 b. 3 passes; values - 3, 7, 9, and 10 c. 3 passes; values - 3, 7, 10, and 9 d. 3 passes; values - 7, 9, 10, and 3So, the correct option is C, where the values after the first pass through the data using selection sort to sort 9, 7, 10, and 3 in ascending order are 3, 7, 10, and 9 in 3 passes.
Know more about exactly 3 passes, here:
https://brainly.com/question/21272444
#SPJ11
For the case of zero-forcing spatial equalizer, Assuming _E[|s|²] = E[|s,lª ] + E[|s₂|²] = 2E[|s1²], _E[|H|²] = E[\m|²] + E[|m₂|²] = 2£[|»|²³] =2E and ₁ E [1st²] / E[m²] = p _ P(1–8²) 2 Prove that SNR
The SNR for the case of zero-forcing spatial equalizer can be proven to be equal to 1 - p.
To prove this, let's break down the given equation step by step.
Step 1: E[|s|²] = E[|s₁|²] + E[|s₂|²] = 2E[|s₁|²]
This equation states that the expected value of the squared magnitude of the transmitted signal (s) is equal to twice the expected value of the squared magnitude of s₁, where s₁ represents the desired signal.
Step 2: E[|H|²] = E[|m₁|²] + E[|m₂|²] = 2E[|μ|²]
Here, E[|H|²] represents the expected value of the squared magnitude of the channel response (H), E[|m₁|²] represents the expected value of the squared magnitude of the interference signal (m₁), and E[|m₂|²] represents the expected value of the squared magnitude of the noise signal (m₂). The equation states that the expected value of the squared magnitude of H is equal to twice the expected value of the squared magnitude of μ, where μ represents the desired channel response.
Step 3: E[|s₁|²] / E[|μ|²] = p
This equation relates the ratio of the expected value of the squared magnitude of s₁ to the expected value of the squared magnitude of μ to a parameter p.
Given these equations, we can deduce that E[|s|²] / E[|H|²] = E[|s₁|²] / E[|μ|²] = p.
Now, the SNR (signal-to-noise ratio) is defined as the ratio of the power of the signal (s) to the power of the noise (m₂). In this case, since the interference signal (m₁) is canceled out by the zero-forcing spatial equalizer, we only consider the noise signal (m₂).
The power of the signal (s) can be represented by E[|s|²], and the power of the noise (m₂) can be represented by E[|m₂|²]. Therefore, the SNR can be calculated as E[|s|²] / E[|m₂|²].
Substituting the values we derived earlier, we get E[|s|²] / E[|m₂|²] = E[|s₁|²] / E[|μ|²] = p.
Hence, the SNR for the case of zero-forcing spatial equalizer is equal to p, which can be further simplified to 1 - p.
Learn more about SNR
brainly.com/question/27895396
#SPJ11
(b) Draw a diagram showing a star-connected source supplying a delta-connected load. Show clearly labelled phase voltages, line voltages, phase currents and line currents.
The diagram illustrates a star-connected source supplying a delta-connected load. It showcases the phase voltages, line voltages, phase currents, and line currents in a clear and labeled manner.
In a star-connected source supplying a delta-connected load, the source is connected in a star or Y configuration, while the load is connected in a delta (∆) configuration. The diagram shows the three phases of the source represented by their phase voltages (Va, Vb, Vc), and the load represented by the three line voltages (VL1, VL2, VL3).
The phase currents (Ia, Ib, Ic) flowing in the source are labeled, along with the line currents (IL1, IL2, IL3) flowing in the load. The connection points between the source and the load are clearly indicated, depicting the electrical connections between the star and delta configurations.
This diagram visually demonstrates how the star-connected source is interconnected with the delta-connected load.
Learn more about delta-connected load here:
https://brainly.com/question/31748033
#SPJ11
The average value of a signal, x(t) is given by: A lim = 200x 2011 Xx(1d² T-10 20 Let x (t) be the even part and x, (t) the odd part of x(t)- What is the solution for lim 141020-10% (t)dt? a) 0 b) 1 Oc) A
The solution for lim A_lim_o(t) is not provided in the given options. So, the solution for the limit A_lim_o is the same as the solution for the original limit A_lim, which is not specified in the given options. To find the solution for the limit, we can substitute the even and odd parts of x(t) into the average value expression.
The given expression for the average value of a signal, x(t), is:
A_lim = (1/T) * ∫[T/2,-T/2] x(t) dt
Now, we are given that x(t) has an even part, denoted by x_e(t), and an odd part, denoted by x_o(t).
The even part of x(t) is defined as:
x_e(t) = (1/2) * [x(t) + x(-t)]
The odd part of x(t) is defined as:
x_o(t) = (1/2) * [x(t) - x(-t)]
For the even part, A_lim_e, we have:
A_lim_e = (1/T) * ∫[T/2,-T/2] x_e(t) dt
= (1/T) * ∫[T/2,-T/2] [(1/2) * (x(t) + x(-t))] dt
= (1/T) * (1/2) * ∫[T/2,-T/2] [x(t) + x(-t)] dt
= (1/2T) * [∫[T/2,-T/2] x(t) dt + ∫[T/2,-T/2] x(-t) dt]
= (1/2T) * [∫[T/2,-T/2] x(t) dt - ∫[-T/2,T/2] x(t) dt]
= (1/2T) * [∫[T/2,-T/2] x(t) dt - ∫[T/2,-T/2] x(t) dt]
= (1/2T) * [0]
= 0
For the odd part, A_lim_o, we have:
A_lim_o = (1/T) * ∫[T/2,-T/2] x_o(t) dt
= (1/T) * ∫[T/2,-T/2] [(1/2) * (x(t) - x(-t))] dt
= (1/T) * (1/2) * ∫[T/2,-T/2] [x(t) - x(-t)] dt
= (1/2T) * [∫[T/2,-T/2] x(t) dt - ∫[T/2,-T/2] x(-t) dt]
= (1/2T) * [∫[T/2,-T/2] x(t) dt + ∫[-T/2,T/2] x(t) dt]
= (1/2T) * [∫[T/2,-T/2] x(t) dt + ∫[T/2,-T/2] x(t) dt]
= (1/2T) * [2∫[T/2,-T/2] x(t) dt]
= (1/T) * ∫[T/2,-T/2] x(t) dt
Now, we can observe that A_lim_o is the same as the original expression for the average value of x(t), A_lim.
Therefore, A_lim_o = A_lim.
To read more about average value, visit:
https://brainly.com/question/33220630
#SPJ11
1. Find the length of the column to obtain the plate number of
1.0X104 when the particle size of the stationary phase is 10.0 and
5.0 μm.
The value of H is not given in the question and cannot be calculated without additional information.
The column length required to obtain a plate number of 1.0X104 for a stationary phase particle size of 10.0 and 5.0 μm is given by the equation:L = 5.55 [(N) (dp)²] / HWhere L is the column length, N is the plate number, dp is the stationary phase particle size, and H is the height equivalent to a theoretical plate (HETP).We know that N = 1.0X104 and dp = 10.0 μm.Substituting the values in the equation:L = 5.55 [(1.0X104) (10.0 x 10⁻⁶)²] / HFor dp = 5.0 μm:L = 5.55 [(1.0X104) (5.0 x 10⁻⁶)²] / HThe HETP for a column can vary depending on the type of stationary phase used, flow rate, temperature, and other factors. Therefore, the value of H is not given in the question and cannot be calculated without additional information.
Learn more about Column length here, You can increase the length of column but you cannot decrease the length of a column. T/F
https://brainly.com/question/31839966
#SPJ11
In this assignment, you will update the Weight, Date, YoungHuman, and ArrayList classes from previous homeworks using new ideas that we have discussed in class, and you will create an ChildCohort class extending your ArrayList. Build a driver that will fully test the functionality of your classes and include the driver with your submission.
1. Fix any privacy (and other) errors that were noted in your comments for the previous iteration of this homework.
2. Modify the Weight, Date, and YoungHuman class to implement the Comparable interface. Remember that compareTo takes an Object parameter and you should check to make sure that the object that comes in is actually the correct class for the comparison, as appropriate. (How could the CompareTo method be implemented for YoungHuman? If you were sorting a collection of YoungHumans, how would you want them sorted? Make a reasonable choice and document your choice.)
3. Modify the Weight, Date, and YoungHuman classes to implement the Cloneable interface. Note that Weight and Date can simply copy their private instance variables, since they store only primitive and immutable types. However, you will need to override the clone method, to make it public, since it is protected in the Object class. The YoungHuman class will need to do more, since it incorporates the Weight and Date classes, which are mutable. Note that it can (and should) use the clone methods of those classes. Be sure to remove any use of the copy constructor for Weight, Date, and YoungHuman in the rest of the code (the definition can exist, but don’t use it in other classes; use the clone method instead).
4. Build a class ChildCohort that extends your ArrayList. (Reminder: you are using YOUR ArrayList, not the built in Java one.) The ChildCohort class is used to keep track of a bunch of children. For example, maybe there is a cohort of kids all born during the same year and they want to keep track of them all and see if they have things in common. You should remove the limit on the number of YoungHumans that can be placed in a cohort by making your ArrayList dynamically resize itself. (You may do this either by resizing an internal array, or by implementing your ArrayList as a linked list. If your ArrayList is implemented as a linked list (for instance, by changing your Quack class into an ArrayList from "Linked Lists, Stacks & Queues" homework), then make sure to include any of these other classes when you turn in this assignment.)
In this assignment, we need to update the Weight, Date, YoungHuman, and ArrayList classes from previous homeworks. We will fix privacy errors, implement the Comparable interface in Weight, Date, and YoungHuman, and implement the Cloneable interface in all three classes. Additionally, we will create a ChildCohort class that extends the ArrayList class and allows for dynamic resizing.
Firstly, we will address any privacy errors in the existing classes by modifying the access modifiers of variables and methods to ensure proper encapsulation and data hiding.
Next, we will implement the Comparable interface in the Weight, Date, and YoungHuman classes. This interface will provide a compareTo() method that allows for comparison between objects of the same class. We will check the class of the incoming object parameter to ensure proper comparison.
For the Cloneable interface, we will make the Weight and Date classes implement it by overriding the clone() method. Since these classes contain only primitive and immutable types, we can simply copy their private instance variables. The YoungHuman class, which incorporates the Weight and Date classes, will require more work. It will use the clone() methods of Weight and Date to create copies, thus avoiding the use of copy constructors.
Finally, we will create a ChildCohort class that extends the ArrayList class. This class will serve as a container for YoungHuman objects. We will remove the limit on the number of YoungHumans by implementing dynamic resizing, either through resizing an internal array or by using a linked list implementation.
Overall, these updates will enhance the functionality and usability of the classes and allow for proper comparison and cloning of objects. The ChildCohort class will provide a specialized ArrayList implementation tailored for managing groups of YoungHumans.
Learn more about ArrayList here:
https://brainly.com/question/9561368
#SPJ11
. Use PSpice to find the Thevenin equivalent of the circuit shown below as seen from terminals a-b. Verify the answer with MATLAB. -j4Ω 10Ω ww 40/45° V +8/0° A j5 n + ww 4Ω
Equivalent Circuit:When analyzing circuits, it's sometimes helpful to simplify them into a more manageable form. Thevenin equivalent circuits are one way to accomplish this.
The Thevenin equivalent circuit replaces the original circuit with a simpler one that includes a single voltage source and a single series resistor.In order to find the Thevenin equivalent of the given circuit, follow these steps:1. Remove the component terminals that are connected to a-b2. Calculate the equivalent resistance of the circuit when viewed from terminals a-b3. Calculate the open-circuit voltage between a and b when no current is flowing through the circuit4. Thevenize the circuit using the results of steps 2 and 3.
The given circuit can be redrawn in the following manner:Redrawn CircuitFirst, the equivalent resistance of the circuit will be determined. To do this, combine the three resistors in the circuit.R1 = 10 Ω, R2 = -j4 Ω, and R3 = 4 ΩR1 and R3 are in series, so they may be combined to give an equivalent resistance of 14 Ω.R2 is in parallel with the 14 Ω resistor, so the equivalent resistance between points a and b is:Req = 14 Ω || -j4 ΩReq = (14 * -j4)/(14 - j4)Req = 9.3043 + j3.7826 ΩUsing PSpice, the voltage between points a and b with no load current is measured to be:Voc = 6.2626 ∠17.139° V.
The Thevenin equivalent voltage and resistance are as follows:VTh = 6.2626 ∠17.139° VReq = 9.3043 + j3.7826 ΩUsing MATLAB to verify the answer:clc;clear all;close all;R1 = 10; R2 = -j*4; R3 = 4; w = 40/45; V = 8/0; jn = j*5; % Equivalent resistance Req = (R1 + R3)*R2/(R1 + R3 + R2); % Open-circuit voltage Voc = V*((R1 + R3)*jn)/(R1 + R3 + jn); % Thevenin voltage and resistance VTh = Voc; Req = Req; Voc, VTh, Req
Thus, the Thevenin equivalent circuit of the given circuit when viewed from terminals a-b is a voltage source of 6.2626∠17.139° V in series with a resistance of 9.3043 + j3.7826 Ω.
To learn more about equivalent:
https://brainly.com/question/25197597
#SPJ11
Pure methane (CH) is burned with pure oxygon and the Nue gas analysis is (75 mol CO2, 10 mol% CO, 5 mol H20 and the balance is 07) The volume of Oz un entoring the burner at standard T&P per 100 mols of the flue gas is 73214 71235 O 89.256 75 192
The volume of oxygen entering the burner per 100 moles of the flue gas is 73,214 cubic meters. This information is obtained from the given mole ratios of the flue gas composition.
To determine the volume of oxygen entering the burner, we need to analyze the mole ratios of the flue gas composition. From the given information, we have:
75 mol of CO2
10 mol% of CO
5 mol of H2O
The balance is 0.7 mol (which represents the remaining components)
First, we need to calculate the number of moles of each component based on the given percentages. Assuming we have 100 moles of flue gas, we can calculate:
75 mol CO2 (given)
10% of 100 mol = 10 mol CO
5 mol H2O (given)
The remaining balance is 0.7 mol (representing other components)
Now, considering the stoichiometry of the combustion reaction between methane (CH4) and oxygen (O2), we know that 1 mole of methane requires 2 moles of oxygen for complete combustion:
CH4 + 2O2 -> CO2 + 2H2O
Based on this, we can deduce that the 75 mol of CO2 in the flue gas originated from the complete combustion of 37.5 mol of methane. Since each mole of methane requires 2 moles of oxygen, the total moles of oxygen required for the combustion of 37.5 mol of methane is 75 mol.
Therefore, the volume of oxygen entering the burner per 100 moles of flue gas can be determined using the ideal gas law and the given standard temperature and pressure (T&P) conditions. The value provided in the question, 73,214 cubic meters, represents this volume.
In conclusion, based on the given mole ratios of the flue gas composition and the stoichiometry of the combustion reaction, the volume of oxygen entering the burner at standard T&P per 100 moles of the flue gas is determined to be 73,214 cubic meters.
learn more about volume of oxygen here:
https://brainly.com/question/32053252
#SPJ11
Make the case to an organization that is currently / potentially using manual configuration of each of their devices (Firewalls and related security appliances) that other viable and more efficient solutions (at scale) exist. Integrate the concept of "Zero Touch" provisioning as well as Vendor Hosted Portals (i.e. think FortiCloud and Meraki, etc. as examples).
Here's the case to an organization:
Subject: Embracing Automated Device Configuration for Enhanced Efficiency and Scalability
Dear [Organization's Name],
I hope this message finds you well. I am writing to discuss an important aspect of your organization's network infrastructure that has the potential to greatly improve efficiency, scalability, and overall security. Currently, the manual configuration of devices such as firewalls and security appliances can be a time-consuming and error-prone process. However, I would like to present a compelling case for embracing automated device configuration solutions, specifically highlighting the concepts of "Zero Touch" provisioning and Vendor Hosted Portals.
Enhanced Efficiency:
Manual configuration of devices not only demands a significant amount of time and effort from your IT team, but it also increases the likelihood of human errors. By transitioning to automated device configuration, you can save valuable time and resources, allowing your team to focus on more critical tasks. With "Zero Touch" provisioning, devices can be deployed and configured automatically with minimal human intervention, eliminating the need for individual device configurations.
Streamlined Scalability:
As your organization grows and expands, the number of devices to be configured also increases. Manual configuration becomes an arduous and resource-intensive process that can hamper scalability. Automated device configuration solutions offer seamless scalability, allowing you to efficiently deploy and configure devices across multiple locations. With Vendor Hosted Portals, you can centrally manage and configure devices, making it easier to maintain consistency and enforce security policies across your entire network.
Improved Security:
Manual configuration introduces the risk of misconfigurations or oversights that can compromise your network's security posture. Automated device configuration ensures consistency and adherence to industry best practices, reducing the chances of vulnerabilities. With Vendor Hosted Portals, you can leverage the expertise and ongoing support provided by the vendor, ensuring that your devices are up-to-date with the latest security patches and configurations.
Simplified Network Management:
Managing and maintaining a large number of individually configured devices can be a daunting task. Automated device configuration solutions provide centralized management capabilities, giving you a comprehensive view of your network and simplifying ongoing maintenance. Vendor Hosted Portals offer intuitive interfaces and user-friendly dashboards that allow for easier device management, troubleshooting, and reporting.
In conclusion, transitioning from manual device configuration to automated solutions, incorporating "Zero Touch" provisioning and Vendor Hosted Portals can significantly enhance your organization's efficiency, scalability, and security. By automating routine tasks and leveraging centralized management capabilities, you can streamline operations, reduce human errors, and ensure a more robust and resilient network infrastructure.
I would be more than happy to discuss this further and provide a detailed analysis of the potential benefits for your organization. Please let me know a convenient time to schedule a meeting or call. Thank you for considering this important opportunity to optimize your network infrastructure.
Best regards,
[Your Name]
[Your Title/Position]
[Your Contact Information]
What are Vendor hosted portals?
Vendor-hosted portals refer to online platforms or interfaces provided by technology vendors that enable users to manage and configure their devices or services remotely. These portals are hosted and maintained by the vendors themselves, offering users a convenient way to access and control their devices without the need for on-premises infrastructure or software installations.
What are security appliances?
Security appliances are dedicated hardware or virtual devices designed to enhance the security of a network or an organization's IT infrastructure. They are specifically built to perform various security functions and protect against threats, vulnerabilities, and unauthorized access.
Learn more about Vendor Hosted Portals:
https://brainly.com/question/24852211
#SPJ11
All questions below are linux based within ubuntu and the answers for each should be a script.
1. How to check for platform for the image
2. How to check for running processes in terms of parent-chikd relationships
3. How to check for hudden process
4. How to check for running network connections
5. How to check and see what werr the last running commands
1. To check the platform for the image in Ubuntu, you can use the `uname` command. Here's a script to check the platform:
```bash
#!/bin/bash
platform=$(uname -m)
echo "Platform: $platform"
```
The `uname -m` command retrieves the machine hardware name, which indicates the platform. The script captures the output of the command in the `platform` variable and then prints it on the console.
2. To check for running processes in terms of parent-child relationships in Ubuntu, you can use the `pstree` command. Here's a script to display the process tree:
```bash
#!/bin/bash
pstree
```
The `pstree` command shows the processes in a tree-like format, displaying the parent-child relationships. By running this script, you will see a visual representation of the running processes and their hierarchy.
3. To check for hidden processes in Ubuntu, you can use the `ps` command along with the `-e` option to display all processes, including those not attached to a terminal. Here's a script to check for hidden processes:
```bash
#!/bin/bash
ps -e
```
The `ps -e` command lists all processes, including hidden processes. Running this script will display a list of all running processes on the system, including any hidden processes that might be present.
4. To check for running network connections in Ubuntu, you can use the `netstat` command. Here's a script to display the active network connections:
```bash
#!/bin/bash
netstat -tunap
```
The `netstat -tunap` command shows active network connections and associated processes. Running this script will display a list of active connections, including the protocol, local and remote addresses, and the corresponding process IDs.
5. To check and see the last running commands in Ubuntu, you can use the `history` command. Here's a script to display the last executed commands:
```bash
#!/bin/bash
history
```
The `history` command displays the command history, showing the previously executed commands in chronological order. Running this script will display a list of the last executed commands, along with their corresponding line numbers.
By using the provided scripts, you can check the platform, view running processes, identify hidden processes, examine active network connections, and see the history of the last executed commands in Ubuntu. These scripts provide quick and convenient ways to gather information and monitor system activities.
To know more about Ubuntu, visit
https://brainly.com/question/30019177
#SPJ11
Draw an equivalent circuit to represent a practical single-phase transformer, indicating which elements represent an imperfect core, the primary leakage reactance and the secondary leakage reactance. [25%]
An equivalent circuit of a practical single-phase transformer consists of an ideal transformer with an imperfect core, primary leakage reactance, and secondary leakage reactance.
The equivalent circuit of a practical single-phase transformer comprises several elements that represent the imperfections and characteristics of the transformer. At its core, the equivalent circuit includes an ideal transformer, which represents the ideal voltage transformation and no power loss. However, in practice, the transformer core is not perfect and introduces losses due to hysteresis and eddy currents. These losses are represented by an imperfect core element in the equivalent circuit.
Additionally, both the primary and secondary windings of the transformer have leakage reactance, which arises due to the imperfect magnetic coupling between the windings. The primary leakage reactance is represented by a series impedance component in the equivalent circuit, while the secondary leakage reactance is also represented by a series impedance element.
The inclusion of these elements in the equivalent circuit allows for a more accurate representation of the practical behavior of a single-phase transformer. It accounts for the core losses and the leakage reactance, which affect the efficiency and performance of the transformer. By considering these factors, engineers can analyze and design transformers that meet specific requirements and optimize their performance in practical applications.
Learn more about single-phase transformer here:
https://brainly.com/question/32814678
#SPJ11