Kuldip's factory manufactures toys that sell for $29.95 each. The variable cost per toy is $11, and the total fixed costs for the month are $45,000. Calculate the unit contribution margin. 1. $17.50 2.$17.95 3.$19.00 4.$18.95

Answers

Answer 1

The unit contribution margin is calculated by subtracting the variable cost per unit from the selling price per unit. In this case, the unit contribution margin is $18.95, which represents the amount of revenue available to cover fixed costs and contribute to profit for each toy sold. Thus, the correct answer is option 4.

To calculate the unit contribution margin, we need to first understand the terms "variable cost" and "fixed cost." The variable cost refers to the cost that changes depending on the number of units produced, while the fixed cost remains constant regardless of the number of units produced.

In this case, the variable cost per toy is given as $11, and the total fixed costs for the month are $45,000.

The unit contribution margin can be calculated by subtracting the variable cost per unit from the selling price per unit. In this case, the selling price per toy is $29.95, and the variable cost per toy is $11.

Unit contribution margin = Selling price per toy - Variable cost per toy
Unit contribution margin = $29.95 - $11
Unit contribution margin = $18.95

Therefore, the unit contribution margin is $18.95 (option 4).

Learn more about Selling price at:

https://brainly.com/question/21297845

#SPJ11


Related Questions

Q1. Float is one of the streamflow measurement methods. Define
the limitations of this method.

Answers

Float is a streamflow measurement method with limitations, including its inability to measure rivers with rapid flows or deep channels, difficulty obtaining precise readings, potential human error, difficulty in turbidity or low light conditions, and its application to straight channels with equal depth. It is also not suitable for small channels due to high flow rate and wind influence, making it a less accurate method.

Float is one of the streamflow measurement methods. Its limitations are outlined below:Limitations of the float method include the following:

1. The float method of streamflow measurement is not appropriate for rivers or streams with rapid flows or deep channels.

2. A precise reading is difficult to obtain.

3. In shallow streams, the float may drag across the bed or be caught up in vegetation, causing inaccurate readings.

4. When using this approach, the time necessary to collect measurements increases.

5. Human error is a possibility that cannot be eliminated.

6. Float measurements are difficult to achieve in the presence of turbidity or low light conditions.

7. The method of the float is solely applicable to straight channels with an equal depth.

8. The float method isn't suitable for measurement in small channels because it is difficult to keep track of the float due to the high flow rate.

9. Wind can also influence the float's location, causing inaccurate readings.

To know more about Float Visit:

https://brainly.com/question/31180023

#SPJ11

Can someone show me how to work this problem?

Answers

Answer:

10.8 units (you can round to 11 units)

Step-by-step explanation:

are 2 similar triangles PQR and PVW, we find PW (hypotenuse) with the Pythagorean theorem

PW = [tex]\sqrt{9^2+6^2}[/tex]

PW = [tex]\sqrt{81+36}[/tex]

PW = 10.8 units (you can round to 11 units)

f′(−2)=−1,f′(−1)=1,f′(0)=−2,f′(1)=5

Answers

A derivative of a function shows the rate of change of the function at any point on the function. the original function f(x) is:[tex]$$f(x) = \frac{c_1}{4}x^4 + \frac{c_2}{3}x^3 + \frac{c_3}{2}x^2 + c_4x + c_5$$$$f(x) = \frac{1}{4}x^4 - \frac{5}{3}x^3 - x + 1$$[/tex]

To find the equation of the original function f(x), we need to integrate the derivative function f′(x). Let's integrate the given derivative function f′(x) in order to get the original function f(x).

[tex]$$\int f'(x) dx = \int (c_1x^3 + c_2x^2 + c_3x + c_4) dx$$$$ f(x) = \frac{c_1}{4}x^4 + \frac{c_2}{3}x^3 + \frac{c_3}{2}x^2 + c_4x + c_5$$[/tex]

Now, we need to find the values of constants c1, c2, c3, c4 and c5 by using the given conditions:

f′(−2)=−1[tex]$$f(-2) = \int f'(-2) dx = \int (-1) dx = -x + c_5$$[/tex]

Put x = -2 in f(x) and f′(−2)=−1,[tex]$$-1 = f'(-2) = \frac{d}{dx} (-2 + c_5) = 0$$[/tex]

Hence, c5 = -1f′(−1)=1[tex]$$f(-1) = \int f'(-1) dx = \int 1 dx = x + c_4$$[/tex]

Put x = -1 in f(x) and[tex]f′(−1)=1,$$1 = f'(-1) = \frac{d}{dx} (-1 + c_4) = 0$$[/tex]

Hence, c4 = 1[tex]f′(0)=−2$$f(0) = \int f'(0) dx = \int -2 dx = -2x + c_3$$[/tex]

Put x = 0 in f(x) and [tex]f′(0)=−2,$$-2 = f'(0) = \frac{d}{dx} (-2 + c_3) = 0$$[/tex]

Hence, c3 = -2[tex]f′(1)=5$$f(1) = \int f'(1) dx = \int 5 dx = 5x + c_2$$[/tex]

Put x = 1 in f(x) and f′(1)=5,[tex]$$5 = f'(1) = \frac{d}{dx} (5 + c_2) = 0$$[/tex]

Hence, c2 = -5

the original function f(x) is:[tex]$$f(x) = \frac{c_1}{4}x^4 + \frac{c_2}{3}x^3 + \frac{c_3}{2}x^2 + c_4x + c_5$$$$f(x) = \frac{1}{4}x^4 - \frac{5}{3}x^3 - x + 1$$[/tex]

To know more about derivative visit:

https://brainly.com/question/29020856

#SPJ11

Two thousand pounds per hour of vacuum residue is fed into flexicoker which has a CCR of 18%. Find the circulation rate of coke between the reactor and the burner in order to keep the temperature of the reactor, heater and burner (gasifier) at 1000, 1300 and 1500 °F, respectively. The low Btu gas (LBG) flow rate is 2000 lb/h. The specific heat of carbon = : 0.19 Btu/lb.°F and the specific heat (Cp) for the gases = 0.28 Btu/lb.°F. The net coke production in this case is 2.0 wt%. Assume 75% of the coke is consumed in the burner.

Answers

The circulation rate of coke between the reactor and the burner is Coke production rate is 40 lb/h.The Coke consumption rate in the burner is 30 lb/h.The specific heat of carbon is 0.19 Btu/lb.°F.The Heat transfer = 30 lb/h * 0.19 Btu/lb.°F * 500 °F. TheCirculation rate of coke = Heat transfer = 30 lb/h * 0.19 Btu/lb.°F * 500 °F

1. Determine the coke production rate:
Given that 2,000 pounds per hour of vacuum residue is fed into the flexicoker and the net coke production is 2.0 wt%, we can calculate the coke production rate as follows:

Coke production rate = 2,000 lb/h * (2.0/100) = 40 lb/h

2. Calculate the coke consumption rate in the burner:
Given that 75% of the coke is consumed in the burner, we can calculate the coke consumption rate in the burner as follows:

Coke consumption rate in the burner = 40 lb/h * (75/100) = 30 lb/h

3. Determine the specific heat of carbon:

The specific heat of carbon is given as 0.19 Btu/lb.°F.

4. Determine the temperature difference between the reactor and the burner:
The temperature of the reactor is 1,000 °F, and the temperature of the burner (gasifier) is 1,500 °F. Therefore, the temperature difference is:

Temperature difference = 1,500 °F - 1,000 °F = 500 °F

5. Calculate the heat transfer between the reactor and the burner:
To maintain the temperatures of the reactor and burner, heat transfer occurs between them. The heat transfer can be calculated using the formula:

Heat transfer = coke consumption rate in the burner * specific heat of carbon * temperature difference

Substituting the values, we get:

Heat transfer = 30 lb/h * 0.19 Btu/lb.°F * 500 °F

6. Determine the circulation rate of coke:
The circulation rate of coke is the same as the heat transfer rate. Therefore, the circulation rate of coke between the reactor and the burner is:

Circulation rate of coke = Heat transfer = 30 lb/h * 0.19 Btu/lb.°F * 500 °F

Learn more about rate with the given link,

https://brainly.com/question/119866

#SPJ11

The substance contains quantum two level systems with the first state energy O and second state energy 0.0300 eV. Find its molar specific heat at the temperature 100.00K.

Answers

The molar specific heat of the substance at a temperature of 100.00 K is approximately 60.33 J/(mol·K).

The molar specific heat of a substance can be calculated using the formula:

C = 3R + 4R( e^(E2/(kT)) / (e^(E2/(kT)) - e^(E1/(kT)))^2 )

where:
C is the molar specific heat,
R is the gas constant (8.314 J/(mol·K)),
E1 is the energy of the first state,
E2 is the energy of the second state,
k is the Boltzmann constant (8.617333262145 × 10^-5 eV/K),
and T is the temperature in Kelvin.

In this case, we are given that the energy of the first state (E1) is 0 eV and the energy of the second state (E2) is 0.0300 eV. We also know that the temperature (T) is 100.00 K.

Let's substitute the given values into the formula:

C = 3R + 4R( e^(0.0300/(8.617333262145 × 10^-5 × 100.00)) / (e^(0.0300/(8.617333262145 × 10^-5 × 100.00)) - e^(0/(8.617333262145 × 10^-5 × 100.00)))^2 )

Now, let's simplify the calculation step by step:

C = 3R + 4R( e^(0.0300/8.617333262145) / (e^(0.0300/8.617333262145) - e^(0/8.617333262145))^2 )

Using a calculator, we find:

C = 3R + 4R( e^3.48143 / (e^3.48143 - e^0))^2 )

C = 3R + 4R( 32.576 / (32.576 - 1))^2 )

C = 3R + 4R( 32.576 / 31.576 )^2 )

C = 3R + 4R(1.0319)^2

C = 3R + 4R(1.0647)

C = 3R + 4.2588R

C = 7.2588R

Finally, substituting the value of R (8.314 J/(mol·K)):

C = 7.2588 × 8.314 J/(mol·K)

C = 60.3295 J/(mol·K)

Therefore, the molar specific heat of the substance at a temperature of 100.00 K is approximately 60.33 J/(mol·K).

Know more about molar specific heat:

https://brainly.com/question/32064263

#SPJ11

A wide flange A60 steel column has a length of 5.7meters and pinned ends. If Sx = 825 × 10³ mm³, Sy = 127 × 10³mm³, d= 358mm, bf= 172mm, A=7,172mm², Fy=414 MPa, Calculate the critical buckling stress, Fcr in MPa of the column. Express your answer in one decimal place.

Answers

The critical buckling stress of the column is approximately 144.8 MPa, to one decimal place.

Determining the critical buckling stress

The critical buckling stress, Fcr, of a pinned end steel column can be calculated using the Euler formula given below;

[tex]Fcr = (\pi ^2 * E * I) / (K * L)^2[/tex]

where

E is the modulus of elasticity of steel,

I is the minimum moment of inertia of the column cross section,

K is the effective length factor, and

L is the length of the column.

Note that the effective length factor, K, depends on the boundary conditions of the column ends. For pinned ends, K is equal to 1.

I min [tex]= 7.68 * 10^7 mm^4[/tex]

Now, calculate the buckling stress

[tex]Fcr = (\pi ^2 * E * I min) / L^2\\Fcr = (\pi ^2 * 200 * 10^3 MPa * 7.68 * 10^7 mm^4) / (5.7 m * 1000 mm/m)^2[/tex]

[tex]Fcr = 414 MPa * \sqrt(Sx / (A * Sy))\\Fcr = 414 MPa * \sqrt(825 * 10^3 mm^3 / (7,172 mm^2 * 127 * 10^3 mm^3))\\Fcr = 414 MPa * \sqrt(825 / (7,172 * 127))[/tex]

= 144.8 MPa

Therefore, the critical buckling stress of the column is 144.8 MPa to one decimal place.

Learn more on critical buckling on https://brainly.com/question/32450497

#SPJ4

13. If a committee of 3 people are needed out of 8 possible candidates and there is not any distinction between committee members, how many possible committees would there be? Explain your reasoning.

Answers

If a committee of 3 people is needed out of 8 possible candidates and there is no distinction between committee members, we can determine the number of possible committees by using the combination formula. In this case, the formula gives us a result of 56 possible committees.

The combination formula is given by:

C(n, r) = n! / (r! * (n-r)!)

where n is the total number of candidates and r is the number of committee members.

In this case, we have 8 candidates and we need to select 3 for the committee. Plugging these values into the combination formula, we get:

C(8, 3) = 8! / (3! * (8-3)!)

Simplifying further:

C(8, 3) = 8! / (3! * 5!)

Now, let's calculate the factorials:

8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40,320
3! = 3 * 2 * 1 = 6
5! = 5 * 4 * 3 * 2 * 1 = 120

Plugging these values into the formula:

C(8, 3) = 40,320 / (6 * 120) = 40,320 / 720

Simplifying further:

C(8, 3) = 56

Therefore, there would be 56 possible committees if a committee of 3 people is needed out of 8 possible candidates, with no distinction between committee members.

To summarize, we use the combination formula to calculate the number of possible committees. The formula yields a result of 56 potential committees in this instance.

To know more about "Combination Formula":

https://brainly.com/question/1587469

#SPJ11

Based on formal charge calculations, which of the following elements is most likely to participate in the formation of multiple bonds (double or triple bonds)?
a) H b) S
c) Na
d) F e) Cl

Answers

Formal charge is the charge on an atom when all other atoms in the molecule have an equal share of electrons and none of the given elements is likely to participate in multiple bond formation as their formal charge is zero.

The formula to calculate formal charge is:

Formal charge = Valence electrons - Non-bonded electrons - (1/2) Bonded electrons

Valence electrons are the electrons in the outermost shell of an atom. Non-bonded electrons are electrons that are not involved in any bond. Bonded electrons are the electrons that are shared between two atoms in a bond. If the formal charge on an atom is zero, it is stable and likely to participate in bond formation. If the formal charge on an atom is negative, it has gained electrons and if it's positive, it has lost electrons.

So, let's calculate the formal charge on each of the given elements:

a) Hydrogen (H) - Valence electrons = 1, Non-bonded electrons = 0, Bonded electrons = 1Formal charge = 1 - 0 - (1/2)(2) = 0The formal charge on hydrogen is zero, so it is not likely to participate in multiple bond formation.

b) Sulfur (S) - Valence electrons = 6, Non-bonded electrons = 2, Bonded electrons = 2Formal charge = 6 - 2 - (1/2)(4) = 0The formal charge on sulfur is zero, so it is not likely to participate in multiple bond formation.

c) Sodium (Na) - Valence electrons = 1, Non-bonded electrons = 0, Bonded electrons = 1Formal charge = 1 - 0 - (1/2)(2) = 0The formal charge on sodium is zero, so it is not likely to participate in multiple bond formation.

d) Fluorine (F) - Valence electrons = 7, Non-bonded electrons = 3, Bonded electrons = 1Formal charge = 7 - 3 - (1/2)(2) = 0The formal charge on fluorine is zero, so it is not likely to participate in multiple bond formation.

e) Chlorine (Cl) - Valence electrons = 7, Non-bonded electrons = 3, Bonded electrons = 1Formal charge = 7 - 3 - (1/2)(2) = 0The formal charge on chlorine is zero, so it is not likely to participate in multiple bond formation.

From the above calculation, we can observe that none of the given elements is likely to participate in multiple bond formation as their formal charge is zero.

Learn more about bond formation from the given link:

https://brainly.com/question/12937609

#SPJ11

Which metabolic pathway is amphibolic? glycolysis gluconeogenesis citric acid cycle oxidative phosphorylation

Answers

The citric acid cycle is the metabolic pathway that is amphibolic. The citric acid cycle, also known as the Krebs cycle, is a series of chemical reactions that take place in the mitochondria of cells in most eukaryotic organisms.

It is a vital metabolic pathway that aids in the conversion of macronutrients such as glucose, fatty acids, and amino acids into energy in the form of ATP (adenosine triphosphate).The citric acid cycle is described as amphibolic because it can both produce and consume molecules, serving as both a catabolic and anabolic pathway.

It is a central metabolic pathway that links other pathways such as glycolysis and oxidative phosphorylation, and is essential for generating the energy required for cellular processes. The citric acid cycle is described as amphibolic because it can both produce and consume molecules, serving as both a catabolic and anabolic pathway.

To know more about metabolic visit :

https://brainly.com/question/19664757

#SPJ11

Write a Claisen condensation (starting materials, reagents, and
product) and clearly explain its mechanism.

Answers

The mechanism of the Claisen condensation have been shown in the image attached.

What is a  Claisen condensation?

The Claisen condensation is a C-C bond-forming reaction that is particularly helpful for the synthesis of related chemicals such as - keto esters and -di ketones. Typically, sodium ethoxide or sodium hydroxide are used as a strong base to carry out the reaction under basic conditions.

The ester or carbonyl compound's -carbon must be deprotonated during the reaction for it to become nucleophilic and capable of attacking the carbonyl carbon of another molecule. The reaction may need to be driven to completion under reflux conditions and is frequently conducted at high temperatures.

Learn more about  Claisen condensation:https://brainly.com/question/32280056

#SPJ4

Answer:

A Claisen condensation is a type of organic reaction that involves the condensation of two ester molecules to form a β-keto ester along with the elimination of an alcohol molecule. The reaction is named after the German chemist Rainer Ludwig Claisen.

Step-by-step explanation:

Let's consider the following example to illustrate the Claisen condensation:

Starting materials:

Ethyl acetate (ethyl ethanoate): CH3COOC2H5

Ethyl propanoate: CH3CH2COOC2H5

Reagent:

Sodium ethoxide (NaOEt): NaOCH2CH3

Product:

Ethyl 3-oxobutanoate (β-keto ester): CH3COCH2CH2COOC2H5

Ethanol: CH3CH2OH

Mechanism of Claisen Condensation:

Step 1: Deprotonation

The reaction begins with the deprotonation of one of the ester molecules by the strong base, sodium ethoxide (NaOEt). The base removes an alpha hydrogen (the hydrogen adjacent to the carbonyl group) from one of the esters, forming an enolate ion.

Step 2: Nucleophilic attack

The enolate ion generated in step 1 acts as a nucleophile and attacks the carbonyl carbon of the second ester molecule, resulting in the formation of a tetrahedral intermediate.

Step 3: Elimination

In this step, the alkoxide ion (formed by the deprotonation of the second ester) eliminates an alkoxide ion (formed in step 2) as an alcohol molecule. This process leads to the formation of a β-keto ester.

Step 4: Proton transfer

In the final step, a proton is transferred from the alkoxide ion to the oxygen atom of the β-keto ester, generating the final product, ethyl 3-oxobutanoate, and regenerating the sodium ethoxide catalyst.

Overall, the Claisen condensation involves the formation of an enolate ion, its nucleophilic attack on another ester molecule, elimination of an alcohol molecule, and subsequent proton transfer. This reaction allows the synthesis of β-keto esters, which are important intermediates in organic synthesis.

To know more about Deprotonation

https://brainly.in/question/15553547

#SPJ11

A second-order reaction has a rate constant of 0.008000/(M · s) at 30°C. At 40°C, the rate constant is 0.06300/(M · s).
(A) What is the activation energy for this reaction? _________. kJ/mol

Answers

the activation energy for the second-order reaction is approximately 61.7 kJ/mol.

To find the activation energy for a second-order reaction, we can use the Arrhenius equation:
k = Ae^(-Ea/RT)
Where:
k = rate constant
A = pre-exponential factor
Ea = activation energy
R = gas constant (8.314 J/(mol·K))
T = temperature in Kelvin

We have the rate constants for the reaction at two different temperatures (30°C and 40°C). Let's convert these temperatures to Kelvin:
30°C + 273.15 = 303.15 K
40°C + 273.15 = 313.15 K

Now, we can use the Arrhenius equation with the two sets of rate constant and temperature values to find the activation energy.

For the first set of data (30°C):
k1 = 0.008000/(M · s)
T1 = 303.15 K

For the second set of data (40°C):
k2 = 0.06300/(M · s)
T2 = 313.15 K

We can write the Arrhenius equation for each set of data:
k1 = A * e^(-Ea/(8.314 J/(mol·K) * 303.15 K))
k2 = A * e^(-Ea/(8.314 J/(mol·K) * 313.15 K))

Now, divide the second equation by the first equation to eliminate the pre-exponential factor:
k2/k1 = e^(-Ea/(8.314 J/(mol·K) * (313.15 K - 303.15 K))

Simplifying:
0.06300/(M · s) / (0.008000/(M · s)) = e^(-Ea/(8.314 J/(mol·K) * 10 K)
7.875 = e^(-Ea/(8.314 J/(mol·K) * 10 K)
Taking the natural logarithm (ln) of both sides:
ln(7.875) = -Ea/(8.314 J/(mol·K) * 10 K)
Solving for Ea:
Ea = -ln(7.875) * (8.314 J/(mol·K) * 10 K
Ea ≈ 61.7 kJ/mol

Therefore, the activation energy for this second-order reaction is approximately 61.7 kJ/mol.

Let us know more about second-order reaction : https://brainly.com/question/12446045.

#SPJ11

please solve in 30 minutes
6. Find the Fourier transform of the function f(t): And hence evaluate S sin x sin x/2 x² dx. 1+t, if −1≤ t ≤0, 1-t, if 0 ≤ t ≤ 1, 0 otherwise.

Answers

The Fourier transform of the function f(t) for [tex]-1 ≤ t ≤ 0[/tex] is given by[tex]F(ω) = ∫[1+t]e^{-iωt}dt[/tex]. Integrating with respect to t, we get[tex]∫[1+t]e^{-iωt}dt = e^{iω}∫e^{-iωt}dt = e^{iω}[-(iω)^{-1}e^{-iωt}] = (1 - e^{iω})/iω[/tex].


The Fourier transform of the function f(t) for 0 ≤ t ≤ 1 is given by

[tex]F(ω) = ∫[1-t]e^{-iωt}dt[/tex].

Integrating with respect to t, we get[tex]∫[1-t]e^{-iωt}dt = e^{iω}∫e^{-iωt}dt = e^{iω}[-(iω)^{-1}e^{-iωt}] = (1 - e^{-iω})/iω,\\[/tex]

The Fourier transform of the function f(t) is given by
[tex]F(ω) = (1 - e^{iω})/iω for -1 ≤ t ≤ 0F(ω) = (1 - e^{-iω})/iω for 0 ≤ t ≤ 1F(ω) = 0 otherwise[/tex]
The value of S sin x sin x/2 x² dx is given by[tex]S sin x sin x/2 x² dx = (1/2)∫[0,π]sin^2xdx = (1/4)∫[0,π]1 - cos(2x)dx = (1/4)(π)[/tex]

Hence, evaluating [tex]S sin x sin x/2 x² dx,[/tex]

we get [tex]S sin x sin x/2 x² dx = (1/4)π.[/tex]

To know more about transform visit:

https://brainly.com/question/11709244

#SPJ11

The Fourier transform is a mathematical tool used to analyze functions in terms of their frequency components. To find the Fourier transform of the given function f(t), we need to break it down into its frequency components.

Let's analyze the function f(t) in different intervals. For -1 ≤ t ≤ 0, the function is given as 1+t. In this interval, we can write f(t) as (1+t) * rect(t), where rect(t) is a rectangular pulse function. The Fourier transform of rect(t) is a sinc function. So, using the linearity property of the Fourier transform, the transform of (1+t) * rect(t) will be the convolution of the transform of (1+t) and the transform of rect(t), which results in a sinc function modulated by the transform of (1+t).
Similarly, for 0 ≤ t ≤ 1, the function f(t) is given as 1-t. We can write f(t) as (1-t) * rect(t), and its Fourier transform will be the same sinc function modulated by the transform of (1-t).
For t outside the intervals -1 ≤ t ≤ 0 and 0 ≤ t ≤ 1, the function is zero, so its Fourier transform will also be zero.
To evaluate S sin x sin x/2 x² dx, we need to find the inverse Fourier transform of the transformed function obtained above and evaluate the integral.
In summary, the Fourier transform of the given function f(t) involves convolving a sinc function with the transforms of the functions (1+t) and (1-t). Then, to evaluate the given integral, we need to find the inverse Fourier transform of the transformed function.

To learn more about Fourier transform refer:

https://brainly.com/question/32536570

#SPJ11

For the competing reactions: K₁ Rxn 1 A + 2B → C k₂ 2A + 3B → Q Rxn 2 C is the desired product and Q the undesired product. If the rates of reaction of A for each of the reactions are: ría = = -K₁CAC r2A = -K₂C² C3 1 1.2 What are the units of k₁ and k₂ (use L, mol and s)?

Answers

The units of k₁ are 1/(L·s) and the units of k₂ are 1/(L·mol·s). These units of k₁ and k₂ can be determined by analyzing the rate equations for the competing reactions.

For reaction 1: r₁A = -K₁CAC, where r₁A is the rate of reaction 1 with respect to A. The units of r₁A are mol/L·s (moles per liter per second). Thus, the units of K₁ can be calculated as follows:

Units of K₁ = units of r₁A / (units of CA * units of C)
           = (mol/L·s) / (mol/L * mol/L)
           = 1/(L·s)

Therefore, the units of K₁ are 1/(L·s).

For reaction 2: r₂A = -K₂C², where r₂A is the rate of reaction 2 with respect to A. The units of r₂A are also mol/L·s. Thus, the units of K₂ can be determined as follows:

Units of K₂ = units of r₂A / (units of C²)
           = (mol/L·s) / (mol²/L²)
           = 1/(L·mol·s)


Therefore, the units of K₂ are 1/(L·mol·s).

Learn more about reaction:

https://brainly.com/question/30464598

#SPJ11

answer this
..............................................................................................................................................................

Answers

Answer:

300 miles

Step-by-step explanation:

In order to calculate the number of miles Leila would need to drive in order for the two plans to cost the same, we have to first find two separate expressions for each plan.

• First plan:

⇒ Initial fee = $57.98

⇒ Additional cost per mile = $0.12

If we consider the number of miles she needs to drive to be x, then the expression is:

cost = 57.98 + 0.12x

• Second plan:

⇒ Initial fee = $69.98

⇒ Additional cost per mile = $0.08

Therefore, the expression, in this case, would be:

cost = 69.98 + 0.08x

Since the question asks for the number of miles when the costs will be the same, we have to equate the above expressions and solve for x:

[tex]57.98 + 0.12x = 69.98 + 0.08x[/tex]

⇒ [tex]57.98 + 0.12x - 0.08x= 69.98[/tex]     [Subtracting 0.08x from both sides]

 [tex]57.98 + 0.04x= 69.98[/tex]

⇒ [tex]0.04x = 69.98 - 57.98[/tex]        [Subtracting 57.98 from both sides]

⇒ [tex]0.04x = 12[/tex]

⇒ [tex]x = \frac{12}{0.04}[/tex]        [Dividing both sides of the equation by 0.04]

⇒ [tex]x = \bf 300[/tex]

Therefore, Leila would have to drive 300 miles in order for the two plans to cost the same.

Identify the non-permissible values of B for the trignometric
expression
cscx/cosx-1
Select the most appropriate set of values from the list
below

Answers

The non-permissible values of B for the trigonometric expression cscx/cosx - 1 are: π/2 + πk for k ∈ Z.

Trigonometric functions, also known as circular functions, are functions of an angle that relate ratios of different sides of a right triangle.

There are six main trigonometric functions: sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (csc).

Non-permissible values are the values of the variables that result in a denominator of zero or an even-indexed root of a negative number.

The reason behind this is that division by zero or an even-indexed root of a negative number is not defined mathematically, resulting in an error in the function.

The given expression is:

cscx/cosx - 1

We can re-write this expression as:

cscx / (cosx - 1)

To find the non-permissible values of B for the trigonometric expression cscx/cosx - 1,

we need to find the values of x that make the denominator (cosx - 1) zero.

Therefore, cosx - 1 = 0cosx = 1x = 2πk for k ∈ Z

This means that the denominator is equal to zero when x = 2πk for k ∈ Z.

These are the non-permissible values for the expression.

We have to exclude these values from the domain of the function to avoid division by zero.

Therefore, the non-permissible values of B are π/2 + πk for k ∈ Z.

To know more about trigonometric expression visit:

https://brainly.com/question/11659262

#SPJ11

Identify the transformed vector.

Answers

Maybe it could be the option B

You are selling a product in an area where 30% of the people live in the city and the rest live in the suburbs. Currently 20% of the city dwellers use your product and 10% of the suburbanites use your product. You are presented with two new sales strategies; the first will increase your market share in the suburbs to 15%. The second will increase your market share in the city to 25%. Which strategy should you adopt? What percentage of the people who own your product are city dwellers before your new sales drive? 4. In a casino in Blackpool there are two slot machines: one that pays out 10% of the time, and one that pays out 20% of the time. Obviously, you would like to play on the machine that pays out 20% of the time but you do not know which of the two machines is more generous. You adopt the following strategy: you assume initially that the two machines are equally likely to be generous machines. You then select one of the two machines at random and put a coin in it. Given that you lose the first bet, estimate the probability that the machine selected is the more generous of the two machines.

Answers

The new percentage of product owners living in the city will be 11.5%.the first strategy is the best one to adopt because it results in the highest percentage of product owners living in the city.

The first step is to calculate the current market share for each location, as well as the percentage of all product owners who live in the city. We can assume that 100% - 30% = 70% of the people live in the suburbs.

Market share in the city = 20%

Market share in the suburbs = 10%

Percentage of product owners living in the city = (20% of city population) + (10% of suburban population) = 0.2 x 0.3 + 0.1 x 0.7 = 0.13 or 13%

If we adopt the first strategy, the new market share in the suburbs will be 15%.

The new percentage of product owners living in the city will be 0.25 x 0.3 + 0.15 x 0.7 = 0.175 or 17.5%.

If we adopt the second strategy, the new market share in the city will be 25%.

The new percentage of product owners living in the city will be 0.25 x 0.3 + 0.1 x 0.7 = 0.115 or 11.5%.

Therefore, the first strategy is the best one to adopt because it results in the highest percentage of product owners living in the city.

To know more about percentage visit:

https://brainly.com/question/32197511

#SPJ11

Use the method of Undetermined Coefficients to solve the I.V.P.
y"-y'-6y=4et, y(0) = 0, y'(0) = 0

Answers

The solution to the given IVP is y(t) = (-2/3) * e^t.

To solve the given initial value problem (IVP) using the method of Undetermined Coefficients, we assume a particular solution of the form:

y_p(t) = A * e^t

where A is a constant to be determined.

First, let's find the derivatives of y_p(t):

y_p'(t) = A * e^t

y_p''(t) = A * e^t

Substituting these derivatives into the differential equation, we get:

y_p''(t) - y_p'(t) - 6y_p(t) = 4e^t

(A * e^t) - (A * e^t) - 6(A * e^t) = 4e^t

Simplifying this equation, we have:

-6A * e^t = 4e^t

From this equation, we can determine the value of A:

-6A = 4

A = -4/6

A = -2/3

Therefore, the particular solution is:

y_p(t) = (-2/3) * e^t

Now, we have the particular solution y_p(t) and need to find the complementary solution y_c(t) to complete the general solution.

The characteristic equation of the homogeneous equation (y'' - y' - 6y = 0) is:

r^2 - r - 6 = 0

Factoring this quadratic equation, we get:

(r - 3)(r + 2) = 0

The roots are:

r_1 = 3 and r_2 = -2

Therefore, the complementary solution is:

y_c(t) = c1 * e^(3t) + c2 * e^(-2t)

To find the values of c1 and c2, we can use the initial conditions.

y(0) = 0

y'(0) = 0

Substituting these conditions into the general solution, we have:

y(0) = c1 * e^(30) + c2 * e^(-20) = c1 + c2 = 0

y'(0) = 3c1 * e^(30) - 2c2 * e^(-20) = 3c1 - 2c2 = 0

From the first equation, we can solve for c1:

c1 = -c2

Substituting this into the second equation, we have:

3(-c2) - 2c2 = 0

Simplifying:

-c2 - 2c2 = 0

-3c2 = 0

c2 = 0

From this, we can determine c1:

c1 = -c2 = 0

Therefore, the general solution to the IVP is:

y(t) = y_c(t) + y_p(t)

= c1 * e^(3t) + c2 * e^(-2t) + (-2/3) * e^t

= 0 * e^(3t) + 0 * e^(-2t) + (-2/3) * e^t

= (-2/3) * e^t

Learn more about  Undetermined Coefficients:

https://brainly.com/question/16968454

#SPJ11

Can some help me? I need this soon

Answers

The value of x = 4cm

Similar Triangles

Similar triangles are triangles that have corresponding angles that are equal to one another and have corresponding sides that are in proportion to each other.

For example, if two triangles are similar and the sides of one of the triangles are 1, 2 and 3 units respectively, then the corresponding sides of the other triangle can be 2, 4 and 6 units respectively. It could also be 1.2, 2.4 and 3.6 units respectively. The ratio of the corresponding sides must be constant.

From the question, the given figure consists of two similar triangles.

Therefore we have,

6/3 = 2

Which implies (from similar triangles) that,

(x + 2)/(x - 2) = 2

multiply both sides by (x-2)

x + 2 = 2(x -2)

x + 2 = 2x - 4

solve for x

2 + 4 = 2x - x

6 = x

x = 4 cm

Learn more about similar triangles from:

https://brainly.com/question/14285697

#SPJ1

1)Would the following combination serve as a buffer?
0.1 M NH4Cl and 1.0 M NH3
2) Would the following combination serve as a buffer?
0.4 M NaC2H3O2 and 0.3M HC2H3O2

Answers

The solution is a buffer solution, and it will resist changes in pH. A buffer solution is an aqueous solution that resists changes in pH when small quantities of an acid or a base are added to it.

A buffer solution typically consists of a weak acid and its salt (conjugate base) or a weak base and its salt (conjugate acid).1. Would the following combination serve as a buffer? 0.1 M NH4Cl and 1.0 M NH3 Yes, the following combination would serve as a buffer.

A buffer is an aqueous solution that can resist changes in pH when small amounts of acid or base are added. NH3 is a weak base, and NH4Cl is its conjugate acid.

Thus, the solution is a buffer solution, and it will resist changes in pH.2. Would the following combination serve as a buffer? 0.4 M NaC2H3O2 and 0.3M HC2H3O2 Yes, the following combination would serve as a buffer.

A buffer is an aqueous solution that can resist changes in pH when small amounts of acid or base are added. CH3COO^- is a weak base, and CH3COOH is its conjugate acid.

To know more about buffer visit:

brainly.com/question/29856181

#SPJ11

Select all the correct answers.
You're given two side lengths of 6 centimeters and 9 centimeters. Which measurement can you use for the length of the third side to construct a valid triangle?
3 centimeters
10 centimeters
12 centimeters
14 centimeters
18 centimeters

Answers

If the third side is longer than 15 cm, then the 6 and the 9 together
can't reach its ends.

-- If the third side is shorter than 3 cm, then IT can't reach the ends
of the 6 and the 9.

-- So the third side must be longer than 3cm AND shorter than 15 cm.

3cm < S < 15cm

In the accompanying diagram, if triangle OAB is rotated counterclockwise 90 deg about point O, which figure represents the image of this rotation?
(see image below)

Answers

Answer:

Answer option 2

Step-by-step explanation:

When a shape is rotated counterclockwise by 90°, each point of the shape is moved in a circular motion in the counterclockwise direction by 90° around the fixed point of rotation.

As the triangle is rotated about point O, the position of point O does not change (i.e. it is "fixed").

Line segment OA is horizontal in the original figure. When it is rotated 90° counterclockwise, it becomes vertical, where A is above O.

Line segment BA is vertical in the original figure. When it is rotated 90° counterclockwise, it becomes horizontal, where B is to the left of A.

Therefore, the figure that represents the image after the given rotation is the second answer option.

Answer:

Answer option number two.

According to the American Society of Civil Engineers 2017 Infrastructure Report Card,_____ % of the nation's highways are in poor condition

Answers

According to the American Society of Civil Engineers 2017 Infrastructure Report Card, 20% of the nation's highways are in poor condition.

In its 2017 Infrastructure Report Card, the American Society of Civil Engineers (ASCE) issued a near-failing rating for the condition of America's transportation infrastructure, citing decades of underinvestment and inaction.

The Society graded the country's transportation infrastructure as a D+, highlighting the growing list of problems caused by the ongoing and cumulative effect of chronic underfunding and deferred maintenance.


In particular, the Report Card rated highways a D, bridges a C+, transit a D-, and rail a B, all of which are higher than the overall grade. According to the report, 20% of the nation's highways are in poor condition, and the country's bridges are aging.

With one in every five miles of highway pavement in poor condition and one in every four bridges structurally deficient or functionally obsolete, the ASCE estimates that Americans spend 5.5 billion hours each year stuck in traffic, at a cost of $120 billion in wasted time and fuel, not to mention the health costs associated with air pollution.

To know more about Engineers visit :

https://brainly.com/question/13304367

#SPJ11

The Complete Question :

According to the American Society of Civil Engineers 2017 Infrastructure Report Card,_____ % of the nation's highways are in poor condition ?

How does Ubiquitin attach to a target protein? via ionic bonding via h-bonding talking interaction via lysine/serine covalent bond via valine/alanine covalent bond. The relationship between the protein of interest and the primary antibody is serine bridge talking interaction nucleophilic lysine link covalent linkage

Answers

Ubiquitin attaches to a target protein via a lysine/serine covalent bond.

Ubiquitin is a small protein that plays a crucial role in the regulation of protein degradation and signaling within cells. It attaches to target proteins through a process called ubiquitination. This process involves the formation of a covalent bond between the C-terminal glycine residue of ubiquitin and the lysine or serine residue of the target protein.

The attachment of ubiquitin to a target protein occurs in a series of steps. First, an activating enzyme (E1) activates ubiquitin by forming a high-energy thioester bond with its C-terminal glycine residue. Then, the activated ubiquitin is transferred to a conjugating enzyme (E2). Finally, a ligase enzyme (E3) recognizes the target protein and facilitates the transfer of ubiquitin from the E2 enzyme to the lysine or serine residue of the target protein, forming a covalent bond.

This covalent attachment of ubiquitin to the target protein acts as a signal for various cellular processes, such as protein degradation by the proteasome or alterations in protein localization and function. The specificity of ubiquitin attachment is determined by the interaction between the E3 ligase and the target protein, as well as the recognition of specific lysine or serine residues within the target protein.

Overall, the attachment of ubiquitin to a target protein via a lysine/serine covalent bond is a crucial mechanism for regulating protein function and cellular processes.

Know more about protein here:

https://brainly.com/question/33861617

#SPJ11

Find the value of h(-67) for the function below.

h(x) = -49x − 125

A.
-3,408
B.
3,158
C.
3,283
D.
-1.18

Answers

Answer:

B.   3,158

Step-by-step explanation:

h(x) = -49x − 125

Let x = -67

h(-67) = -49(-67) − 125

          =3283-125

          = 3158

Answer:

Answer B

Step-by-step explanation:

To find the value of h(-67) for the function h(x) = -49x - 125,

we substitute -67 for x in the function and evaluate it.

h ( - 67 ) = - 49 ( - 67 ) - 125

Now we can simplify the expression:

h ( -67 ) = 3283 - 125

h ( -67 ) = 3158

If an unknown metal forms fluoride salts with the formula MF2,
what is the formula for the metal hydroxide?

Answers

The formula for the metal hydroxide would be MOH.

When an unknown metal forms fluoride salts with the formula MF2, it indicates that the metal has a valency or charge of +2. In fluoride salts, the metal cation (M) carries a +2 charge, while the anion (F-) carries a -1 charge. To balance the charges, two fluoride ions are required for every metal ion.

In the case of metal hydroxides, the hydroxide ion (OH-) carries a -1 charge. To achieve charge neutrality, the metal cation must have a +1 charge. Since the unknown metal in question has a valency of +2 based on the fluoride salts, the hydroxide ion would require two OH- ions to balance the charges.

Therefore, the formula for the metal hydroxide would be MOH, where M represents the unknown metal. This indicates that the metal cation has a +2 charge, and it requires two hydroxide ions to achieve charge balance.

To know more about metal hydroxide, visit:

https://brainly.com/question/28238945

#SPJ11

Assume that ice albedo feedback gives a feedback parameter λ = 0.5 W/m2 ºC. Estimate the corresponding addition to the change in temperature under a doubling of atmospheric CO2 in the absence of other feedbacks. Assume that water vapor and the lapse rate feedback together contribute a feedback parameter λ = 1 W/m2 ºC. Estimate the temperature change with this feedback alone and compare to the combined temperature change when both feedbacks are included.

Answers

1. Without any feedbacks, the temperature change under a doubling of CO₂ is approximately 1.85 ºC .

2. With water vapor and lapse rate feedback alone: Temperature change ≈ 3.7 ºC.

3. With both ice albedo and water vapor/lapse rate feedbacks: Temperature change ≈ 5.55 ºC.

1. The temperature change under different feedback scenarios, we'll consider the following

Ice albedo feedback

Feedback parameter λ = 0.5 W/m² ºC.

Water vapor and lapse rate feedback combined: Feedback parameter λ = 1 W/m² ºC.

Let's start by estimating the temperature change under a doubling of atmospheric CO₂ in the absence of any feedbacks. This is referred to as the no-feedback climate sensitivity.

The no-feedback climate sensitivity (λ₀) is calculated using the formula:

λ₀ = ΔT₀ / ΔF

Where:

ΔT₀ is the temperature change without feedbacks.

ΔF is the radiative forcing due to doubled CO₂, estimated to be around 3.7 W/m².

Assuming the no-feedback climate sensitivity, λ₀ = 0.5 ºC / W/m², we can rearrange the formula:

ΔT₀ = λ₀ × ΔF

ΔT₀ = 0.5 ºC / W/m² × 3.7 W/m²

ΔT₀ = 1.85 ºC

Therefore, without any feedbacks, the temperature change under a doubling of CO₂ is approximately 1.85 ºC.

2. Next, let's consider the temperature change with water vapor and lapse rate feedback alone. The feedback parameter for this combined feedback (λ wv + lr) is 1 W/m² ºC.

The temperature change with water vapor and lapse rate feedback (ΔT wv+lr) is calculated using the formula:

ΔT wv + lr = λ wv + lr × ΔF

ΔT wv + lr = 1 ºC / W/m² × 3.7 W/m²

ΔT wv + lr = 3.7 ºC

Therefore, the temperature change with water vapor and lapse rate feedback alone is approximately 3.7 ºC.

3. Finally, let's calculate the temperature change when both ice albedo and water vapor/lapse rate feedbacks are considered.

The combined feedback parameter (λ combined) is the sum of individual feedback parameters:

λ combined = λ albedo + λ wv + lr

λ combined = 0.5 W/m² ºC + 1 W/m² ºC

λ combined = 1.5 W/m² ºC

Using this combined feedback parameter, we can calculate the temperature change (ΔT combined):

ΔT combined = λ combined × ΔF

ΔT combined = 1.5 ºC / W/m² × 3.7 W/m²

ΔT combined = 5.55 ºC

Therefore, when both ice albedo and water vapor/lapse rate feedbacks are included, the temperature change under a doubling of CO₂ is approximately 5.55 ºC.

To know more about temperature change click here :

https://brainly.com/question/13434538

#SPJ4

Select the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.
2-4x²+4x-8y-24=0
Ellipse
Hyperbola
Parabola
None of the above Circle

Answers

The graph of the equation 2-4x²+4x-8y-24=0 is a parabola.

To determine the type of graph for the equation 2-4x²+4x-8y-24=0, we can rearrange it and analyze its coefficients.

Starting with the equation:
-4x² + 4x - 8y + 26 = 0

The x² term has a negative coefficient, which indicates a downward-opening parabola or an ellipse.

To further determine the shape, let's look at the coefficients of x and y. In this equation, the coefficient of x is positive (4x) and the coefficient of y is negative (-8y).

For an ellipse, the coefficients of x² and y² must have the same sign. In this case, the coefficients are -4 (x²) and -8 (y²), which have different signs.

Therefore, the equation does not represent an ellipse.

For a hyperbola, the coefficients of x² and y² must have opposite signs. In this case, the coefficients are -4 (x²) and -8 (y²), which have the same sign. Therefore, the equation does not represent a hyperbola.

For a parabola, the coefficient of x² must be non-zero, while the coefficient of y² must be zero.

In this case, the coefficient of x² is -4 (non-zero) and the coefficient of y² is zero.

Therefore, the equation represents a parabola.
Since the equation includes both x² and y terms but with different coefficients, it does not match the standard forms of a circle, parabola, ellipse, or hyperbola.
Hence, the graph of the equation 2-4x²+4x-8y-24=0 is a parabola.

To know more about coefficients, click-

https://brainly.com/question/13431100

#SPJ11

The graph of the equation [tex]\(2-4x^2+4x-8y-24=0\)[/tex] is a parabola.

The given equation is a quadratic equation in two variables, x and y, and represents a conic section. By rearranging the terms, we get [tex]\(-4x^2 + 4x - 8y = 22\)[/tex]. To determine the shape of the graph, we can examine the coefficient of the squared terms. Since the coefficient of [tex]\(x^2\)[/tex] is negative -4, we know that the graph represents a parabola.

A parabola is a U-shaped curve that can open upwards or downwards. The general equation for a parabola is given by [tex]\(y = ax^2 + bx + c\)[/tex], where a, b, and c are constants. In this case, the equation [tex]\(2-4x^2+4x-8y-24=0\)[/tex] can be rearranged to the standard form [tex]\(y = -\frac{1}{8}(x^2 - x + 22)\)[/tex], which matches the general equation for a parabola. Therefore, the graph of the equation is a parabola.

To learn more about parabola refer:

https://brainly.com/question/29211188

#SPJ11

A section of a bridge girder shown carries an
ultimate uniform load Wu= 55.261kn.m over the
whole span. A truck with ultimate load of P kn on
each wheel base of 3m rolls across the girder.
Take Fc= 35MPa , Fy= 520MPa and stirrups
diameter = 12mm , concrete cover = 60mm.
Calculate the depth of the ultimate moment capacity of
the section in Kn.m

Answers

The depth of the ultimate moment capacity of the section is approximately 303 mm.

How to find?

Ultimate moment capacity of the section is given by the formula;

[tex]Mu = WuL²/8 + P×a×(L-a)/2[/tex]

Where, a = 3 m (wheelbase)The first term in the equation denotes the ultimate moment capacity due to uniformly distributed load and the second term is due to the impact of a moving wheel at distance 'a'.

Substituting the given values in the above formula we get;

Mu = 55.261 × 10² / 8 + 60 × 3 × (10 - 3) / 2

Mu = 414.46 + 855

Mu = 1269.46 kN.m

The effective depth (d) of the ultimate moment capacity of the section is given by the formula;

[tex]d = D - c - φ/2[/tex]

Substituting this value in the formula for moment capacity of a rectangular section,

we have;

[tex]Mu = (0.138fcbd²)/1.5 + (0.87fyAs(d - a/2))/1.15[/tex]

where, b is the breadth of the section.

As is the area of steel in the section.

As the steel is distributed uniformly over the width of the beam, the neutral axis will be at the centre of the depth of the beam.

So, the lever arm for the steel is;

d - a/2 - 12/2 - 20 = d - 32where, 20 is the distance of the centre of steel from the extreme compression fibre.

Substituting these values in the moment capacity equation and solving for d we get,

d = 303.45 mm

≈ 303 mm.

Therefore, the depth of the ultimate moment capacity of the section is approximately 303 mm.

To know more on Neutral axis visit:

https://brainly.com/question/32820336

#SPJ11

I'm stuck on this, it's trigonometry

Answers

Rules for transformations apply to all functions. Likely, you learned that the parent function for a quadratic is x², and shifting up/down means the parent function looks like x² ± a while shifting left/right means the parent function looks like (x ± a)². The same rules will apply to trigonometric functions.

The transformation sin(x) - a results in a vertical shift down

The transformation sin(x + a) results in a horizontal shift left

The transformation sin(x) + a results in a vertical shift up

The transformation sin(x - a) results in a horizontal shift right

Other Questions
Write a C++ program to Calculate the sum of two integers (X and Y) and print the sum The simulation does not provide an ohmmeter to measure resistance. This is unimportant for individual resistors because you can click on a resistor to find its resistance. But an ohmmeter would help you verify your rule for the equivalent resistance of a group of resistors in parallel (procedure 5 in the Resistance section above). Since you have no ohmmeter, use Ohm's law to verify your rule for resistors in parallel. For a normally consolidated soil with a liquid limit of 60, how long would it take in years to reach 90% consolidation assuming that the load were uniformly distributed through the soil, the soil were singly drained, and the thickness of the compressible layer were 34 ft? Describe a typical application of the sequencer compare (SQC) function. Provide an example. The irreversible, elementary liquid-phase reaction 2A B is carried out adiabatically in a flow reactor with Ws=0 and without a pressure drop. The feed contains equal molar amounts of A and an inert liquid (1). The feed enters the reactor at 294 K with vo = 6 dm/s and CAO 1.25 mol/dm. 1. What would be the temperature inside of a steady-state CSTR that achieved X=0.9? 2. What would be volume of the steady-state CSTR that achieves X= 0.9? 3. Use the 5-point rule to numerically calculate the PFR volume required to achieve X=0.9? 4. Use the energy balance to construct table of T as a function of XA. 5. For each XA, calculate k, -r and FAO/-TA 6. Make a plot of FA0/-TA as a function of XA. Extra information: E = 12000 cal/mol CPA 17.5 cal/mol K CpB35 cal/mol.K Cpl = 17.5 cal/mol K AHA (TR) = -24 kcal/mol AHg(Tr)= -56 kcal/mol AH, (TR)=-17 kcal/mol k = 0.025 dm/mol s at 350 K. A Manager of one restaurant claims that their average number of customers is more than 100 a day. Below are the number of customers recorded for a month.122, 110, 98, 131, 85, 102, 79, 110, 97, 133, 121, 116, 106, 129, 114, 109, 97, 133, 127, 114, 102, 129, 124, 125, 99, 98, 131, 109, 96, 123, 121.Test the manager's claim at 5% significance level by assuming the population standard deviations is 5. 15. Write an algebraic expression for P in terms of the variables P2 and Eav. You can include other known quantities (0 J, 83 J, 166 J), but no other variables. Hint: Use Eq. 5, and recall that Eo= HELP ME WILL GIVE BRAINLIEST!!!! For a surface radio wave with H = cos(107t) ay (H/m) propagating over land characterized by = 15, Mr = 14, and 0 = 0.08 S/m. Is the land can be assumed to be of good conductivity? Why? (Support your answer with the calculation) Consider the causal LTI system described by the frequency response H(w) = 1+w- The zero state response y(t), if the system is excited with an input z(t) whose Fourier transform (w) = 2+ jw +1+w.is None of the others y(t) = 2e-u(t) + te-u(t) Oy(t)=(2+te *)u(t) Oy(t) = te tu(t) - 2e-u(t) +2e-tu(t) y(t) = (2+te t)u(t) + 2e-2u(t) Question 9 (1 point) Is it possible to determine the zero-input response of a system using Fourier transform? True False Question 10 (5 points) What is the power size of the periodic signal z(t) = 1 + 3 sin(2t) - 3 cos(3t)? Question 11 (3 points) The fundamental frequency wo of the periodic signal z(t) = 1 - 3 cos(3t) + 3 sin(2t) is O1 rad/s 2 rad/s O 5 red/s 3 rad/s None of the others Q. 2 Figure (2) shows a liquid-level system in which two tanks have cross- sectional areas A and 42, respectively. A pump is connected to the bottom of tank 1 through a valve of linear resistance R. The liquid flows from tank 1 to tank 2 through a valve of linear resistance R and leaves tank 2 through a valve of linear resistance R3. The density p of the liquid is constant. a-Derive the differential equations in terms of the liquid heights h and h. Write the equations in second-order matrix form. b- Assume the pump pressure Ap as the input and the liquid heights h and h as the outputs. Determine the state-space form of the system. 11:09 PM Pa 00 A A R % Part CNow, to get numerical equations for x and y, youll need to know the initial values (at time t = 0) for some velocities and accelerations. On the Table below the video:Select cm as the mass measurement set to display.Click the Table label and check all x and y displacement and velocity data: x, y, vx, and vy. Then click Close.Now rewrite the displacement equations from Part A and Part B above by substituting in the x and y velocity values from time t = 0 and also using the theoretical value of acceleration of gravity. Write them out below. An electron travels at a speed of 2.0107 ms in a plane perpendicular to a magnetic field of 0.010 T. Determine the path of its orbit, the period, and the frequency of rotation. Describe how Solomon Asch's think study did or did not follow the 5APA principles. (Describe how for each principle ising examplesfeom the study.) JAVA please:The problem is called "Calendar"Ever since you learned computer science, you have become more and more concerned about your time. To combine computer learning with more efficient time management, you've decided to create your own calendar app. In it you will store various events.To store an event, you have created the following class:import java.text.SimpleDateFormat;import java.util.Date;class Event{private Date startDate, endDate;private String name;public Event(String startDate, String EndDate, String name) {SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");try {this.startDate= format.parse(startDate);this.EndDate= format.parse(EndDate);} catch (Exception e) {System.out.println("Data is not in the requested format!");}this.name= name;}public Date getStartDate() {return startDate;}public Date getEndDate() {return endDate;}public String getName() {return name;}}You have seen that everything works according to plan, but as you prepare every day at the same time for 2 hours for computer science, you would like your application to support recurring events.A recurring event is an event that is repeated once in a fixed number of hours.For example, if you train daily in computer science, the event will be repeated every 24 hours. Thus, if you prepared on May 24, 2019 at 12:31:00, the next time the event will take place will be on May 25, 2019 at 12:31:00.Another example is when you are sick and you have to take your medicine once every 8 hours. Thus, if you first took the medicine at 7:30, the next time you take it will be at 15:30 and then at 23:30.Now you want to implement the EventRecurrent class, a subclass of the Event class. This will help you to know when the next instance of a recurring event will occur.RequestIn this issue you will need to define an EventRecurrent class. It must be a subclass of the Event class and contain, in addition, the following method:nextEvent (String) - this method receives a String that follows the format yyyy-MM-dd HH: mm: ss and returns a String in the same format that represents the next time when the event will start. That moment can be exactly at the time received as a parameter or immediately after.In addition, the class will need to implement the following constructor:EventRecurent(String startDate, String endDate, String name, int numberHours)where numberHours is the number of hours after which the event takes place again. For example, if the number of hours is 24, it means that the event takes place once a day.Specifications:The time difference between the date received by the NextEvent and the result of the method will not exceed 1,000 days. To solve this problem you can use any class in java.util and java.text; Events can overlap;Example:import java.text.*;import java.util.*;class Event{private Date startDate, endDate;private String name;// Receives 2 strings in format yyyy-MM-dd HH: mm: ss // representing the date and time of the beginning and end of the event and //another string containing the name with which the event appears in the calendar. public Event(String startDate, String endDate, String name) {SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");try {this.startDate= format.parse(startDate);this.endDate= format.parse(endDate);} catch (Exception e) {System.out.println("Date is not in the given format!");}this.name = name;}public Date getStartDate() {return startDate;}public Date getEndDate() {return endDate;}public String getName() {return name;}}// YOUR CODE HERE....public class prog {public static void main(String[] args) {EvenimentRecurent er = new EvenimentRecurent("2019-03-09 22:46:00","2019-03-09 23:00:00", "Writing problems", 24);System.out.println(er.NextEvent("2019-04-19 22:46:23"));// 2019-04-20 22:46:00}}Attention:In this issue, we have deliberately omitted some information from the statement to teach you how to search for information on the Internet to solve a new problem.Many times when you work on real projects you will find yourself in the same situation. 12. In the Wynn (1992) paper we read, the researchers tested infants' looking time to simple math calculations using Mickey Mouses in a display case. Across all 3 experiments, the experimenters manipulated as an independent variable, and this was a. whether the math problem was addition or subtraction; between-subjects whether the outcome was expected or unexpected; within-subjects C whether infants saw 1 Mickey Mouse or 2 Mickey Mouse at the end; between- subjects d. how long infants were looking; within-subjects : Solve the following linear program using Bland's rule to resolve degeneracy: 0 maximize 10x - 57x29x3 - 24x4 subject to 0.5x 5.5x2 2.5x3 + 9x40 0.5x11.5x2 0.5x3+ x40 X1 1 X1, X2, X3, x4 0. A surveyor stands 150 feet from the base of a building and measures the angle of elevation to the top of the building to be 27. How tall is the building? Round to one decimal place.Hint: Make sure your calculator is in degree mode!a.76.4 ftb.294.4 ftc.68.1 ft Water resource development projects and related land planning are to be undertaken for a small river basin. During a preliminary study phase, it has been determined that there are no good opportunities for constructing new dams and reservoirs for water supplies, hydroelectric plants, or groundwater supplies. However, there is much interest in better management of existing water-based recreation, protecting and enhancing fish and wildlife, and reducing erosion over the watershed. with particular emphasis on environmental quality. What is the Social Impacts Recreation, HealthyActivities, Sightseeing, that will occur? Suppose over the next year Ball has a return of 12.9%, Lowes has a return of 22%, and Abbott Labs has a return of - 10%. The value of your portfolio over the year is: A. $20,836 B. $19,794 C. $21,878 D. $22,920