in a ballistic pendulum experiment, projectile 1 results in a maximum height h of the pendulum equal to 2.6 cm. a second projectile (of the same mass) causes the pendulum to swing twice as high, . the second projectile was how many times faster than the first?

Answers

Answer 1

The second projectile was 2 times faster than the first projectile, as its initial velocity was twice that of the first projectile.

Let's assume that the first projectile had an initial velocity of v1, and the second projectile had an initial velocity of v2.

m1v1 = (m1 + m2)v2,

v1 = 2v2

This means that the initial velocity of the second projectile was twice that of the first projectile.

To find out the maximum height reached by the second projectile, we can use the conservation of energy:

1/2 m1 v2^2 = (m1 + m2)gh

h' = 2h = 5.2 cm

Substituting the values in the equation, we get:

1/2 m1 v2^2 = (m1 + m2)gh'

Simplifying, we get:

v2^2 = 2gh'

Substituting the values, we get:

v2^2 = 2 x 9.81 x 0.052

v2 = 0.725 m/s.

A projectile is an object that is propelled through the air and follows a curved trajectory under the influence of gravity. Examples of projectiles include bullets, cannonballs, and rockets. A projectile is typically launched with an initial velocity and then moves through the air under the influence of gravity alone.

The trajectory of a projectile is determined by its initial velocity, angle of launch, and the force of gravity. As the projectile travels through the air, it experiences a downward force due to gravity, which causes it to follow a curved path called a parabola. The maximum height of the projectile occurs at the apex of the parabolic path, where the vertical component of the velocity is zero.

To learn more about Projectile visit here:

brainly.com/question/11422992

#SPJ4


Related Questions

. a car is chasing a motorcycle at a right-angle intersection. the car is approaching from the north and the motorcycle has already turned and is heading straight east. when the car is 0.6 miles north of the intersection point and the motorcycle is 0.8 miles to the east, the distance between the two vehicles is increasing at 20 miles per hour. if the car is driving 60 miles per hour at that moment in time, what is the speed of the motorcycle?

Answers

The motorcycle is driving at 60 mph.

We can use the Pythagorean theorem to relate the distance between the car and motorcycle to the distance they have traveled:

d^2 = (0.6 + vt)^2 + (0.8)^2

where d is the distance between the two vehicles, v is the speed of the motorcycle, and t is the time since the motorcycle turned east.

Differentiating both sides with respect to time, we get:

2d(dd/dt) = 2(0.6 + vt)(v)dv/dt

We are given that dd/dt = 20 mph and v = sqrt((dx/dt)^2 + (dy/dt)^2), where x is the horizontal distance traveled by the motorcycle and y is the vertical distance traveled by the car. At the moment when the car is 0.6 miles north of the intersection, we have:

x = 0.8 miles

y = 0.6 miles

dx/dt = 0 mph (since the motorcycle is heading straight east)

dy/dt = -60 mph (since the car is driving south)

Substituting these values into the equation above and solving for dv/dt, we get:

dv/dt = -3 mph

Therefore, the speed of the motorcycle is:

v = sqrt((dx/dt)^2 + (dy/dt)^2) = sqrt((0)^2 + (-60)^2) = 60 mph

To know more about speed, here

brainly.com/question/26653019

#SPJ4

how much work is done (by a battery, generator, or some other source of potential difference) in moving avogadro's number of electrons from an initial point where the electric potential is 6.00 v to a point where the electric potential is -9.40 v? (the potential in each case is measured relative to a common reference point.)

Answers

Answer:

1.47 x 10^5 joules

Explanation:

To calculate the work done in moving Avogadro's number of electrons from a point where the electric potential is 6.00 V to a point where the electric potential is -9.40 V, we need to use the formula:

W = -q * (ΔV)

where W is the work done, q is the charge of one electron (which is 1.602 x 10^-19 coulombs), and ΔV is the change in electric potential (final potential - initial potential).

First, we need to calculate the change in electric potential:

ΔV = -9.40 V - 6.00 V = -15.40 V

Next, we can substitute the values into the formula:

W = - (6.022 x 10^23 electrons) * (1.602 x 10^-19 C/electron) * (-15.40 V)

W = 1.47 x 10^5 joules

Therefore, the work done in moving Avogadro's number of electrons from a point where the electric potential is 6.00 V to a point where the electric potential is -9.40 V is 1.47 x 10^5 joules

The work done in moving Avogadro's number of electrons from an initial point where the electric potential is 6.00 V to a point where the electric potential is -9.40 V is 1483.312 J.

The work done by a battery, generator, or some other source of potential difference in moving Avogadro's number of electrons from an initial point where the electric potential is 6.00 V to a point where the electric potential is -9.40 V can be calculated using the formula:

W = -nqΔV

Where, W is the work done by the source of potential difference, n is Avogadro's number ([tex]6.02 * 10^{23}[/tex]), q is the charge of a single electron ([tex]-1.6 * 10^{-19}[/tex] C), ΔV is the potential difference, which is equal to the final potential minus the initial potential. The initial potential is 6.00 V, and the final potential is -9.40 V.

ΔV = (-9.40) - (6.00) = -15.40 V

[tex]W = -nq \Delta V= -(6.02 * 10^{23})*(1.6 * 10^{-19})*(-15.40)= 1483.312[/tex] J.

To know more about electric potential

brainly.com/question/31173598

#SPJ11

mA = 6 kg, MB = 8 kg, and mc = 10 kg. When the blocks are released, (a) What are the accelerations and directions of the blocks? (b) What are the tensions in the cords?

Answers

The tension in the string T1 = T2 = T3Using equations (5), (6) and (7), we can calculate T1:T1 = ma a1 = (6 kg) (a)N = 6aNT1 = T2 = T3 = 6aNAns. The tensions in the cords would be "6a N".

When the blocks are released, the acceleration of the blocks would be the same (a) What are the accelerations and directions of the blocks?mA = 6 kg, MB = 8 kg, and mc = 10 kgUsing F=ma: mAa1 = T1 - f1... eq. 1MBa2 = T2 - f2... eq. 2mc a3 = T3 - f3... eq. 3where f1 = f2 = f3 = 0 (frictional force is negligible)Adding equations (1), (2) and (3):mAa1 + MBa2 + mca3 = T1 + T2 + T3... eq. 4Since the pulley is light and inextensible, the tension in the string is the same for all the blocks:T1 = T2 = T3Using equations (1) and (2), we can calculate a2 and a1 respectively:a1 = (T1 - f1) / ma = (T1) / ma ... eq. 5a2 = (T2 - f2) / MB = (T2) / MB ... eq. 6Using equation (3), we can calculate a3:a3 = (T3 - f3) / mc = (T3) / mc ... eq. 7Since the blocks are connected in such a way that they move together, the acceleration of the blocks would be the same: a = a1 = a2 = a3Substituting equations (5), (6) and (7) in equation (4), we get:mAa + MBa + mc a = 3T1T1 = (mA + MB + mc)a... eq. 8Substituting values:mA = 6 kg, MB = 8 kg, and mc = 10 kga = T1 / (mA + MB + mc)a = T1 / 24 kgT1 = 24aN... eq. 9Substituting values:mA = 6 kg, MB = 8 kg, and mc = 10 kga = T1 / 24 kgSubstituting the value of T1 from equation (9) in the above equation, we get:a = (24a) / 24 kga = aNAns. Acceleration of the blocks would be "a" in the direction shown in the diagram.

Learn more about  the blocks here:

https://brainly.com/question/13640028

#SPJ4

at what frequency does s a 10 μ F capacitor have a reactance of 100 m uF capacitor A) 159 Hz B) 1.59 MHz D) 15.9 kHz C) 1.59 kHz

Answers

The frequency at which a 10 μF capacitor has a reactance of 100 mΩ is 1.59 kHz.

The correct answer to the given question is option C) 1.59 kHz. The frequency at which a 10 μF capacitor has a reactance of 100 mΩ is 1.59 kHz. A capacitor's reactance is a function of its capacitance and the frequency of the signal passing through it. The capacitor's impedance,

or opposition to alternating current, is determined by the reactance of the capacitor. It is denoted by the symbol Xc, which is measured in ohms (Ω).The formula for calculating the reactance of a capacitor is as follows:Xc = 1 / 2πfCWhere,

Xc is the reactance of the capacitor in ohmsf is the frequency of the signal in HertzC is the capacitance of the capacitor in faradsAs a result, the frequency at which a 10 μF capacitor has a reactance of 100 mΩ can be calculated as follows:

100 mΩ = Xc1 / 2πfC = 1 / (2π × f × 10 μF)100 × 10^-3 = 1 / (2π × f × 10 × 10^-6)2π × f = 1 / (100 × 10^-3 × 10 × 10^-6)2π × f = 1 / 100f = 1 / (100 × 2π) = 1.59 × 10^3 HzHence, the frequency at which a 10 μF capacitor has a reactance of 100 mΩ is 1.59 kHz.

To learn more about : capacitor

https://brainly.com/question/27753307

#SPJ11

a (static) mobile hangs as shown below. the rods are massless and have lengths as indicated. the mass of the ball at the bottom right is 1 kg. what is the total mass of the mobile?

Answers

Tension in line, T = Weight of ball = 1kg Total mass of mobile= Mass of ball + Mass of rod + Mass of lines= 1 kg + 0 kg + 0 kg= 1 kg The total mass of the mobile in the given figure is 3 kg.

The total mass of the mobile in the given figure is 3 kg. The mobile is made up of a single rod, two lines, and a ball at the bottom right with a mass of 1 kg. Since the rod and lines have no mass, their masses can be ignored. The mass of the mobile is determined by the mass of the ball, which is 1 kg. The mobile's mass is calculated using the principle of equilibrium. Since the mobile is stationary, the forces acting on it must be in equilibrium. Because of this, the upward force on the ball is equal to the downward force on the other side of the mobile. The tension in the line is equal to the weight of the ball. 1kg is the mass of the ball.

Learn more about mass here:

https://brainly.com/question/5248140

#SPJ4

what is the maximum standard size overcurrent protective device that may be used to protect a storage-type water heater with a rating of 4,500 watts,

Answers

The maximum standard size overcurrent protective device (OCPD) that may be used to protect a storage-type water heater with a rating of 4,500 watts is a 30-amp circuit breaker.

This is because, according to the National Electrical Code (NEC), the OCPD must be rated at no more than 125% of the motor or appliance load. In this case, the 4,500 watt water heater requires an OCPD rated for no more than 5625 watts, which is equal to a 30-amp circuit breaker.

A 30-amp circuit breaker will provide the necessary protection for the water heater, as it will shut down the circuit if the current draw exceeds 30 amps. This will prevent the water heater from overheating and potentially causing a fire. Also, this OCPD size is the largest allowed for a 15-amp circuit, as the NEC prohibits the installation of a larger OCPD than what is listed in the table.

know more about Overcurrent protective device here

https://brainly.com/question/30579099#

#SPJ11

which has the highest luminosity? the andromeda galaxy the planet mercury the sun the star betelgeuse

Answers

The star Betelgeuse has the highest luminosity among the options provided, which include the Andromeda Galaxy, the planet Mercury, and the Sun. Luminosity refers to the total amount of energy emitted by an astronomical object per unit of time. The correct answer is The star Betelgeuse.

Betelgeuse, a red supergiant star in the constellation Orion, is approximately 100,000 times more luminous than our Sun.

In comparison, the Sun, which is a main-sequence star, has a much lower luminosity than Betelgeuse, although it is the most luminous object in our solar system. The planet Mercury, being a rocky object with no source of light production, has no inherent luminosity of its own. Instead, it reflects sunlight, making it visible from Earth.

The Andromeda Galaxy, while having an overall higher luminosity than Betelgeuse due to its vast collection of stars, is not a single astronomical object. Thus, when comparing individual objects, Betelgeuse has the highest luminosity.

For more such questions on Betelgeuse, click on:

https://brainly.com/question/30367770

#SPJ11

finding the actual speed and direction of an aircraft a dc-lo jumbo jet maintains an airspeed of 550 miles per hour in a southwesterly direction. the velocity of the jet stream is a constant 80 miles per hour from the west. find the actual speed and direction of the aircraft.

Answers

The actual speed of the aircraft is approximately 554.7 miles per hour, at an angle of 217.6 degrees south of west, calculated using vector addition of airspeed and jet stream velocity.

To find the actual speed and direction of the aircraft, we can use vector addition. Let's represent the airspeed of the aircraft as a vector with magnitude of 550 miles per hour pointing southwest, and the velocity of the jet stream as a vector with magnitude of 80 miles per hour pointing due west. To find the actual velocity of the aircraft, we add these two vectors using the head-to-tail method or the parallelogram method. The resulting vector represents the actual velocity of the aircraft with respect to the ground. The magnitude of this vector is approximately 554.7 miles per hour, and its direction is 217.6 degrees south of west (measured counterclockwise from due west). Therefore, the aircraft is moving at an actual speed of 554.7 miles per hour towards the south-southwest direction.

Learn more about  aircraft here:

brainly.com/question/17445348

#SPJ4

A 0.0214 m diameter coin rolls up a 13.0◦
inclined plane. The coin starts with an initial
angular speed of 45.4 rad/s and rolls in a
straight line without slipping.
How much vertical height does it gain before it stops rolling?

Answers

The coin gains a vertical height of 0.182 m before it stops rolling.

What is angular speed?

Angular speed is a term used to describe the rate of change of angular movement.

KE = (1/2)Iω² + (1/2)mv²

I is moment of inertia of the coin, ω is angular velocity, m is mass of coin, and v is its linear velocity.

As v = ωr

r is radius of the coin. For a uniform disk, the moment of inertia is given by: I = (1/2)mr²

KE = (1/2)(1/2)mr²ω² + (1/2)mv²

KE = (1/4)mr²ω² + (1/2)mv²

v = ωr

KE = (1/4)mr²(ω²+ 4v²)

KE = (1/4)(0.0214/2)²(45.4² + 4(0)²) = 0.0235 J

As PE = m g h

m g h = KE

mg(h/g) = KE

h = KE/mg

h = 0.0235/(0.0214/2)²(9.81) = 0.182 m

Therefore, coin gains a vertical height of 0.182 m before it stops rolling.

To know more about angular speed, refer

https://brainly.com/question/6860269

#SPJ1

Can someone help me asap pleaseee

Answers

The horizontal component of the velocity is 10.69 m/s and the vertical component of the velocity is 7.42 m/s.

What are the horizontal and vertical components of the velocity?

The horizontal and vertical components of the velocity can be found using trigonometry.

The horizontal component of the velocity is given by Vx = V * cos(theta), where V is the initial velocity and theta is the angle above the horizontal.

Vx = 13 m/s * cos(35 degrees) = 10.69 m/s

The vertical component of the velocity is given by Vy = V * sin(theta), where V is the initial velocity and theta is the angle above the horizontal.

Vy = 13 m/s * sin(35 degrees) = 7.42 m/s

The time the snowball is in the air can be found using the vertical component of the velocity and acceleration due to gravity.

The equation for the height of an object (h) at a time (t) under constant acceleration due to gravity (g) with an initial vertical velocity (Vy) is:

h = Vy * t + 0.5 * g * t^2

At the highest point, the vertical velocity is zero. So we can use this equation to find the time it takes for the snowball to reach its highest point:

0 = Vy * t + 0.5 * g * t^2

Solving for t, we get:

t = -Vy / (0.5 * g)

t = -7.42 m/s / (0.5 * 9.81 m/s^2)

t = 1.51 seconds

Since the snowball takes the same amount of time to reach its highest point and fall back down, the total time in the air is twice this value:

Total time = 2 * 1.51 seconds

Total time = 3.02 seconds

Therefore, the giant snowball is in the air for 3.02 seconds.

The horizontal distance the snowball travels can be found using the horizontal component of the velocity and the time the snowball is in the air.

The equation for the horizontal distance (d) traveled by an object with an initial horizontal velocity (Vx) over time (t) is:

d = Vx * t

d = 10.69 m/s * 3.02 seconds

d = 32.3 meters

Therefore, the giant snowball travels 32.3 meters horizontally before hitting the ground.

Learn more about horizontal and vertical components of velocity at: https://brainly.com/question/24681896

#SPJ1

formed of kinetic energy formula ​

Answers

Kinetic energy is calculated as follows: Kinetic energy = (1/2) x mass x velocity², where mass is the mass of the moving object, measured in kilograms (kg), and velocity is the speed of the moving object.

What is kinetic energy formed by?

Radiant, thermal, acoustic, electrical, and mechanical kinetic energies are the basic categories. Gamma rays and ultraviolet light, which are constantly travelling through the universe, are examples of radiant energy. Sound energy is kinetic energy that manifests as noise and vibrations.

Are kinetic energy forms universal?

Although there are several types of energy, they may all be divided into two groups: kinetic and potential. Motion of waves, electrons, and atoms is known as kinetic energy. Potential energy is both stored energy and gravitational energy, the energy of position.

To learn more about kinetic energy visit:

brainly.com/question/15764612

#SPJ9

What is the formula for kinetic energy?

how are cold and warm fronts different? how are cold and warm fronts different? the type of front is determined by which air mass is heavier. the type of front is determined by which air mass is moving. the type of front is determined by which air mass is larger. the type of front is determined by which air mass is older. the type of front is determined by which air mass is higher.

Answers

Cold and warm fronts are different because the type of front is determined by which air mass is heavier.

A cold front forms when a cold air mass advances towards a warm air mass. It is characterized by the cooler air mass pushing under the warmer air mass. This creates a steep slope, and the air rises rapidly, creating thunderstorms and strong winds.

Warm fronts, on the other hand, occur when a warm air mass advances towards a cold air mass. In this case, the warm air mass gradually rises over the denser, cooler air mass. This creates a long, gradual slope, and the air is less likely to create severe weather, instead causing a gradual change in weather patterns.

Learn more about cold fronts here: https://brainly.com/question/28015058

#SPJ11

a ferris wheel with a radius of 13 m is rotating at a rate of one revolution every 2 minutes. how fast is a rider rising when the rider is 18 m above ground level? m/min

Answers

A 13 m-diameter Ferris wheel revolving at a speed of one rotation every two minutes. The rider is moving downwards at a rate of 23.1 m/minute when he is 18 m above ground level.

To solve this problem, we need to use the concepts of circular motion and related rates. Let's first draw a diagram to understand the situation better.

We have a Ferris wheel with a radius of 13 m, and it is rotating at a rate of one revolution every 2 minutes. This means that the time taken for one complete revolution is 2 minutes. We want to find the rate at which a rider is rising when the rider is 18 m above ground level.

Let's assume that the Ferris wheel is initially at the horizontal level, and the rider is at the highest point at this moment. After a time t, the Ferris wheel has rotated through an angle θ, and the rider has moved down to a point where he is 18 m above ground level. Let's call this point P.

We know that the radius of the Ferris wheel is 13 m, and the distance from the center of the Ferris wheel to the point P is (13 - 18) = 5 m. Therefore, we can use the Pythagorean theorem to find the distance between the center of the Ferris wheel and the point P:

sqrt((13)^2 - (5)^2) = sqrt(144) = 12 m

Now, we need to find the angular velocity of the Ferris wheel. We know that the Ferris wheel completes one revolution every 2 minutes, which means that it completes 1/2 revolution in 1 minute. Therefore, the angular velocity of the Ferris wheel is:

ω = (1/2) * 2π radians/minute = π radians/minute

We can now use the formula for related rates to find the rate at which the rider is moving downwards:

dP/dt = -rω sinθ

where dP/dt is the rate at which the rider is moving downwards, r is the distance between the center of the Ferris wheel and the point P (which we have already found to be 12 m), ω is the angular velocity of the Ferris wheel (which we have found to be π radians/minute), and sinθ is the sine of the angle between the radius of the Ferris wheel and the line joining the center of the Ferris wheel to the point P.

To find sinθ, we can use the fact that the point P is on a circle with a radius of 13 m. Therefore, we can use the following equation:

sinθ = opposite/hypotenuse = 5/13

Substituting the values in the formula for related rates, we get:

dP/dt = -12 * π * 5/13 = -23.1 m/minute

To learn more about circular motion

https://brainly.com/question/2285236

#SPJ4

how many electrons pass through the cross-sectional area of a wire per second if the wire carries a 0.2 amp current?

Answers

Answer:

approximately 1.248 x 10^18 electrons pass through the cross-sectional area of the wire per second

Explanation:

To determine the number of electrons passing through the cross-sectional area of a wire per second, we need to use the formula:

I = q/t

where I is the current in amperes (A), q is the charge in coulombs (C), and t is the time in seconds (s).

We can rearrange this formula to solve for q:

q = I x t

We know that the wire carries a current of 0.2 A, which means that 0.2 coulombs of charge pass through the wire every second. However, we want to know how many electrons are passing through the wire per second.

To convert from coulombs to electrons, we need to use the fact that 1 coulomb is equal to 6.24 x 10^18 electrons. Therefore, the number of electrons passing through the cross-sectional area of the wire per second is:

q (in electrons) = 0.2 A x 1 s x 6.24 x 10^18 electrons/C

q (in electrons) = 1.248 x 10^18 electrons/s

The number of electrons passing through the cross-sectional area of a wire per second carrying a 0.2 amp current is approximately 1.25 x 10¹⁸ electrons.

To find how many electrons pass through a wire per second with a 0.2 amp current, we can use the formula: Number of electrons = Current (I) / Elementary charge (e). The elementary charge is approximately 1.6 x 10⁻¹⁹ coulombs.


1. Identify the given current (I) as 0.2 amps.


2. Recall the elementary charge (e), which is approximately 1.6 x 10⁻¹⁹ coulombs.


3. Use the formula: Number of electrons = Current (I) / Elementary charge (e).


4. Plug in the values: Number of electrons = 0.2 amps / (1.6 x 10⁻¹⁹ coulombs).


5. Calculate the result: Number of electrons ≈ 1.25 x 10¹⁸ electrons.

To know more about Elementary charge click on below link:

https://brainly.com/question/3985120#

#SPJ11

what characteristic do all of the outer planets have in common? responses they are small and dense they are small and dense they have liquid cores they have liquid cores they are mostly made of hydrogen and helium they are mostly made of hydrogen and helium they lack moons

Answers

The outer planets have in common, The characteristic that all of the outer planets have in common is that they are mostly made of hydrogen and helium.

These planets are also known as gas giants, and they are composed mainly of these two gases. They are much larger than the inner rocky planets, with sizes ranging from 4 to 30 times that of the Earth.

These planets also have a lower density compared to the inner rocky planets, as they are composed mainly of gases rather than solid materials. Additionally, they have liquid cores and are known to have a large number of moons. Hence, the correct option is: They are mostly made of hydrogen and helium.

For more such questions on outer planets

brainly.com/question/1799806

#SPJ11

on a dry asphalt road, a car's stopping distance varies directly as the square of its speed. a car traveling at 45 mph can stop in 67.5 feet. what is the stopping distance for a car traveling at 60 mph

Answers

The stopping distance for a car traveling at 60 mph on a dry asphalt road is approximately 119.88 ft.

Starting with the facts provided, we can construct the following proportionality equation between the car's squared speed (v) and stopping distance (d):

d ∝ v²

This demonstrates that the stopping distance is directly proportional to the square of speed.

We also know that when the car is traveling at 45 mph, its stopping distance is 67.5 feet. We can use this information to find the constant of proportionality (k) in our equation:

67.5 = k × 45²

67.5 = 2025k

k = 67.5/2025 = 0.0333.

Now we can use the equation and the constant of proportionality to find the stopping distance for a car traveling at 60 mph:

d = k × v²

d = 0.0333 ×  60²

d = 119.88 feet (rounded off to two decimal places)

Therefore, the stopping distance for a car traveling at 60 mph on a dry asphalt road is approximately 119.88 ft.

To learn more about stopping distance, refer to:

https://brainly.com/question/24020960

#SPJ4

an object is placed 20.6 cm to the left of a thin converging lens that has focal length 11.9 cm. what is the distance between the object and the image?

Answers

When an object is placed at 20.6 cm to the left of a converging lens with focal length 11.9, the distance between the object and the image is approximately 7.57 cm. This can be found by finding the image distance.

To find the distance between the object and the image, we need to first determine the image distance using the lens formula. The lens formula is given by:

1/f = 1/do + 1/di

Where:
- f is the focal length of the lens (11.9 cm)
- do is the object distance (20.6 cm)
- di is the image distance, which we need to find.


Step 1: Plug in the given values into the lens formula:

1/11.9 = 1/20.6 + 1/di


Step 2: Find a common denominator for the fractions:

(20.6*di) / (11.9*20.6) = (11.9*di) / (11.9*20.6) + (20.6*11.9) / (11.9*20.6)


Step 3: Simplify the equation:

(20.6*di) / 246.14 = (11.9*di + 245.14) / 246.14


Step 4: Cross-multiply and solve for di:

20.6*di = 11.9*di + 245.14


Step 5: Subtract 11.9*di from both sides of the equation:

8.7*di = 245.14


Step 6: Divide both sides by 8.7 to isolate di:

di ≈ 28.17 cm


Now that we have the image distance, we can find the distance between the object and the image.
Distance = |object distance - image distance|
Distance = |20.6 cm - 28.17 cm|
Distance ≈ 7.57 cm


Know more about image distance here:

https://brainly.com/question/12629638

#SPJ11

a stone will fall straight to ground in 4 s whendropped from rest from the top of a 60 m high building. if the stone is thrown horizontally from this building with a velocity of 8 m/s , at what distance x beyong the building will it strike the ground?

Answers

Answer:

32 m

Explanation:

When the stone is thrown horizontally, its initial horizontal velocity (Vx) is 8 m/s, and its initial vertical velocity (Vy) is 0. The stone will follow a parabolic path, with the same vertical motion as the stone dropped from rest.

Vertical motion:

Initial height (h) = 60 m

Vertical acceleration (a) = -9.8 m/s^2 (downward direction)

Time of flight (t) = 4 s

Final vertical velocity (Vy) = Vy + a*t = 0 + (-9.8 m/s^2)*4 s = -39.2 m/s

Vertical displacement (y) = Vyt + 0.5at^2 = 0 + 0.5(-9.8 m/s^2)*(4 s)^2 = -78.4 m (negative because the stone falls below the initial height)

Horizontal motion:

Initial horizontal velocity (Vx) = 8 m/s

Horizontal acceleration (ax) = 0 (no acceleration in horizontal direction)

Time of flight (t) = 4 s

Horizontal displacement (x) = Vx*t = 8 m/s * 4 s = 32 m

Therefore, the stone will strike the ground at a horizontal distance of 32 meters beyond the building.

a 3.75-kg block of wood floats on water. what minimum mass of lead, hung from the wood by a string, will cause the block to sink?

Answers

The mass of the lead needed to sink the block of wood depends on the buoyancy force acting on the wood.

Buoyancy is the upward force exerted by a fluid on an object submerged or floating in it. In this case, the buoyancy force acting on the block of wood must be overcome by the weight of the lead to cause the wood to sink.

The buoyancy force on the block of wood can be calculated using Archimedes' principle, which states that the buoyancy force is equal to the weight of the fluid displaced by the object. The density of water is 1000 kg/m^3, so the buoyancy force on the block of wood is

[tex](3.75 kg)(9.8 m/s^2) = 36.75 N.[/tex]

To sink the wood, the weight of the lead must exceed the buoyancy force on the wood. The weight of the lead needed can be calculated using the equation W = mg, where W is the weight of the lead, m is the mass of the lead, and g is the acceleration due to gravity

[tex](9.8 m/s^2).[/tex]

Therefore, the minimum mass of lead required to sink the wood is

[tex](36.75 N)/(9.8 m/s^2) = 3.75 kg[/tex]

.

In conclusion, a minimum mass of 3.75 kg of lead, hung from the wood by a string, will cause the block to sink.

Learn more about acceleration here:

https://brainly.com/question/30660316

#SPJ4

what is the image that you see through a converging lens when the lens is close to your eyeball and you look at a close object? check all that xhwgg .

Answers

The image that you see through a converging lens when the lens is close to your eyeball and you look at a close object is virtual and enlarged.

When an object is held close to the eye and seen via a converging lens, the image seems magnified and virtual. An expanded and upright virtual picture is created when the lens bends the incoming light rays so that they converge and seem to come from a point behind the lens. The distance between the lens and the item being seen as well as the focal length of the lens affect the distance of the image from the lens.

To examine a close item, it may not be the best practice to hold a lens too close to the eye as this might strain and hurt the eye. For this reason, a magnifying glass or another optical device could be better suitable.

To learn more about converging lens, refer to:

https://brainly.com/question/15123066

#SPJ4

a long straight wire carries a current i into a quarter loop of radius r and out of the loop through another straight wire as shown below. what is the magnitude of the magnetic field at the point p center of the quarter loop? treat the long straight wires as extending infinitely in the directions shown and assume no other source of magnetic field.

Answers

The magnitude of the magnetic field at point P is |B| = μ₀ * i / (2π * r)

dB = (μ₀/4π) * (i * dl x r) / (r/2)²

dB = 2 * (μ₀/4π) * (i * dl x r) / r²

dB = (μ₀/2π) * (i * dl x r) / r²

B = ∫dB = (μ₀/2π) * (i * ∫dl x r) / r²

B = (μ₀/2π) * (i * r * ∫dθ) / r²

B = (μ₀/2π) * (i * π/2) / r

B = μ₀ * i / (2π * r)

A magnetic field is a vector field that describes the magnetic influence of electric currents and magnetic materials. It is represented by lines of force that indicate the direction and strength of the magnetic field at each point in space. The magnetic field is measured in units of tesla (T) or gauss (G) and is produced by moving electric charges or by the intrinsic magnetic moment of elementary particles such as electrons and protons.

Magnetic fields have several important applications in everyday life, including electric motors, generators, and MRI machines. They are also critical to our understanding of the behavior of charged particles in space, such as the Earth's magnetic field that protects us from harmful cosmic radiation. The study of magnetic fields is an important branch of physics, known as electromagnetism, which also encompasses electric fields and their interaction with each other and with matter.

To know more about Magnetic field visit here:

brainly.com/question/23096032

#SPJ4

The cabin of a small freight elevator is secured to a
motor by a cable and is moving upward while slowing
down. There is no contact between the cabin and the
elevator shaft. Ignore air resistance.

Answers

The motor is providing the force necessary to move the cabin of the freight elevator upward and slow it down.

What is elevator?

An elevator is a type of vertical transportation device designed to move people and goods from one floor to another within a building or structure. It is typically composed of a cab, a motor, a counterweight, cables, and other components. Elevators are the most common form of vertical transportation for multi-story buildings, and are used for both commercial and residential buildings.

The cable connecting the motor to the cabin is providing the mechanical connection that allows the motor to exert the force necessary to move the cabin. Since there is no contact between the cabin and the elevator shaft, the cabin is being accelerated and decelerated solely due to the force exerted by the motor. Air resistance has no effect on the motion of the cabin since it is not in contact with the shaft.

To learn more about elevator
https://brainly.com/question/30462591
#SPJ1

an object is experiencing a centripetal acceleration of 1.20 m/s2 while traveling in a circle at a velocity of 0.35 m/s. what is the radius of its motion?.

Answers

The radius of the motion is approximately 0.102 meters.

Centripetal acceleration is the acceleration experienced by an object moving in a circular path. Centripetal acceleration is not a force, but rather a measure of how quickly an object is changing direction as it moves in a circle. We can use the centripetal acceleration equation,

a = v² / r

where a is the centripetal acceleration, v is the velocity, and r is the radius of the circle.

Rearranging the equation to solve for r,

r = v² / a

Plugging in the given values, we get,

r = (0.35 m/s)² / (1.20 m/s²) ≈ 0.102 m

To know more about centripetal acceleration, here

brainly.com/question/29886789

#SPJ4

A 50Kg block is pulled up in an inclined plane at angle of 53° to the horizontal, if the surface is frictionless, what is the efficiency of the inclined?

Answers

Efficiency is defined as the ratio of useful work output to total work input. In this case, the useful work output is the work done in lifting the block, and the total work input is the work done by the pulling force.

The work done in lifting the block is given by the formula: work = force x distance x cos(theta), where theta is the angle between the force and the displacement.

In this case, the force is the weight of the block, which is given by: F = m x g = 50 kg x 9.8 m/s^2 = 490 N.

The distance lifted by the block is given by: d = h / sin(theta), where h is the height the block is lifted.

Let's assume that the block is lifted to a height of 1 meter. Then, we have: d = 1 / sin(53) = 1.28 meters.

So, the work done in lifting the block is: work = 490 N x 1.28 m x cos(53) = 295 J.

The work done by the pulling force is given by: work = force x distance, where the distance is the length of the inclined plane. Let's assume that the length of the inclined plane is 2 meters. Then, we have: work = 490 N x 2 m = 980 J.

Therefore, the efficiency of the inclined plane is: efficiency = useful work output / total work input = 295 J / 980 J = 0.301 or 30.1%.

on what does the magnitude of an applied torque depend? select all that apply. on what does the magnitude of an applied torque depend?select all that apply. the distance between the point of force application and the axis of rotation of the object. the orientation of the force. the mass distribution of the extended object. the magnitude of the force.

Answers

The magnitude of an applied torque depends on the following:

the distance between the point of force application and the axis of rotation of the object.the magnitude of the force.

The applied torque magnitude is an essential quantity to consider when considering rotational motion. Torque is defined as the action of a force on an object that creates a rotational motion around an axis of rotation.

Therefore, the magnitude of an applied torque depends on the distance between the point of force application and the axis of rotation of the object, and the magnitude of the force.

When it comes to torque, the perpendicular component of the force creates torque. The perpendicular distance from the axis of rotation to the force is the torque arm (r).

Therefore, we can write,

Torque = force x torque arm.  

The magnitude of torque,

F × r

is proportional to the force applied and the perpendicular distance from the axis of rotation to the line of action of the force.

For similar question on torque

https://brainly.com/question/17512177

#SPJ11

(hrwc10p16) a disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. at one time it is rotating at 10.0 rev/s. after 60 more complete revolutions, its angular speed is 14.649 rev/s.. calculate the angular acceleration.

Answers

The angular acceleration is 1.827 rev/s^2.

We can use the following equation to solve the problem:

ω_f² = ω_i² + 2αθ

where,

ω_i is the initial angular velocity (in rev/s)

ω_f is the final angular velocity (in rev/s)

α is the angular acceleration (in rev/s²)

θ is the angular displacement (in revolutions)

We know that the initial angular velocity is zero, so ω_i = 0. We also know that the angular displacement is 60 revolutions (since the disk rotates 60 more complete revolutions after reaching 10.0 rev/s). So, θ = 60 revolutions.

Substituting the given values into the equation, we get:

(14.649 rev/s)² = 0² + 2α(60 rev)

α = (14.649 rev/s)² / (2 × 60 rev)

α = 1.827 rev/s²

To know more about angular acceleration, here

brainly.com/question/15188925

#SPJ4

pulmonary valve stenosis is suspected in an infant with poor blood oxygenation. the right ventricle is underdeveloped, with a maximum cross-sectional area of 2 cm2. from echocardiography, the velocities in the right ventricle and across the pulmonary valve are 0.5 m/s and 1.3 m/s, respectively. estimate the pressure drop across the valve and the cross-sectional area of the valve.

Answers

The pressure drop across the valve is 5.76 mmHg, and the cross-sectional area of the valve is 0.77 cm².

To estimate the pressure drop across the pulmonary valve and the cross-sectional area of the valve, we can use the simplified Bernoulli equation and the continuity equation.

1. Simplified Bernoulli equation: ΔP = 4 × (V2² - V1²)
Where ΔP is the pressure drop, V1 is the velocity in the right ventricle (0.5 m/s), and V2 is the velocity across the pulmonary valve (1.3 m/s).

ΔP = 4 × (1.3² - 0.5²)
ΔP = 4 × (1.69 - 0.25)
ΔP = 4 × 1.44
ΔP = 5.76 mmHg (approximately)

The pressure drop across the valve is approximately 5.76 mmHg.

2. Continuity equation: A1 × V1 = A2 × V2
Where A1 is the cross-sectional area of the right ventricle (2 cm²), V1 is the velocity in the right ventricle (0.5 m/s), A2 is the cross-sectional area of the valve, and V2 is the velocity across the pulmonary valve (1.3 m/s).

2 × 0.5 = A2 × 1.3
1 = A2 × 1.3
A2 = 1 / 1.3
A2 ≈ 0.77 cm²

The cross-sectional area of the pulmonary valve is approximately 0.77 cm².

More on valves: https://brainly.com/question/30628742

#SPJ11

a gun is fired vertically into the bottom of a block of wood that is at rest on vertical supports at its corners. if the bullet has a mass of 21.0 g and a speed of 310 m/s when it strikes and is embedded in the wood, how high above the supports will the 1.40 kg block rise into the air?

Answers

The block will rise approximately 4.63 meters above the supports.

To find the height, we can use the conservation of momentum and conservation of mechanical energy. First, find the initial momentum of the bullet:

momentum = mass x velocity

= 0.021 kg x 310 m/s

= 6.51 kg m/s.

Since the block is at rest, its initial momentum is 0. After the collision, the bullet is embedded in the block, and their combined mass is 1.421 kg.

Using the conservation of momentum, we can find their final velocity: 6.51 kg m/s = (1.421 kg) x (Vf). Solving for Vf, we get Vf ≈ 4.58 m/s.

Now, using the conservation of mechanical energy, we can find the maximum height reached: (1/2) x (1.421 kg) x (4.58 m/s)² = (1.421 kg) x (9.81 m/s²) x (h). Solving for h, we get h ≈ 4.63 meters.

To know more about conservation of momentum click on below link:

https://brainly.com/question/24989124#

#SPJ11

an elastic ball that wastes 30% of the collision energy as heat when it bounces on a hard floor will rebound to 70% of the height from which it was dropped. explain the 30% loss in height.

Answers

The loss in height is 30% as the loss in the energy is equal to 30% due to proportionality between height and energy.

It is given that the elastic ball that wastes 30% of the collision energy as heat.

On bouncing on the hard floor, it will rebound to 70% of the height.

The loss in height is given as 30%.

We know that, gravitational potential energy is proportional to height.

The collision's energy is completely converted into gravitational potential energy.

Hence, the 30% loss in the energy is nothing but the 30% loss in height.

Rebound height loss of 30% results in a 30% reduction in gravity potential energy. The energy that was converted into thermal energy is equivalent to this.

To know more about energy:

https://brainly.com/question/14637536

#SPJ4

a proton and a singly charged ion of mass 67 atomic mass units (amu) are accelerated through the same potential difference and enter a region of uniform magnetic field moving perpendicular to the magnetic field. what is the ratio of their kinetic energies?

Answers

When it comes to proton and the singly charged ion, the ratio of the kinetic energies can be calculated by the effect of the magnetic field and their motions. It is approximately 66.6

When a charged particle moves through a magnetic field, it experiences a magnetic force. This magnetic force is perpendicular to both its velocity and the magnetic field direction.

The magnitude of the magnetic force,

F = qvB

F ⇒ magnetic force

q ⇒ charge of the particle

v ⇒ velocity of the particle

B ⇒ magnetic field strength.

Magnetic force is perpendicular to the velocity. It only changes its direction. So the work done by the magnetic field on the particles is zero.

The work done by the electric field in accelerating the particles,

W = qV

W ⇒ work done

q ⇒ charge of the particle

V ⇒ potential difference through which the particle is accelerated.

Work done by the magnetic field is zero, the change in kinetic energy of the particles is equal to the work done by the electric field:

ΔK = qV

The ratio of the kinetic energies of the proton and the singly charged ion can be calculated by comparing their charges and masses,

q([tex]proton[/tex]) = +1.602 × 10^-19 C

q([tex]ion[/tex]) = +1 × 1.602 × 10^-19  = +1.602 × 10^-19 C

m([tex]proton[/tex]) = 1.0073 × 1.6605 × 10^-27  = 1.6737 × 10^-27 kg

m([tex]ion[/tex]) = 67 × 1.6605 × 10^-27  = 1.1153 × 10^-25 kg

The ratio of their kinetic energies,

(ΔK([tex]proton[/tex]) / ΔK([tex]ion[/tex])) = (q([tex]proton[/tex])V / q([tex]ion[/tex])V) × (m([tex]ion[/tex]) / m([tex]proton[/tex]))

Simplifying,

(ΔK([tex]proton[/tex]) / ΔK([tex]ion[/tex])) = (m([tex]ion[/tex]) / m([tex]proton[/tex])) × (q([tex]proton[/tex]) / q([tex]ion[/tex])) = (1.1153 × 10^-25 ) / (1.6737 × 10^-27 ) × (+1.602 × 10^-19 ) / (+1.602 × 10^-19 ) = 66.6

Ratio is approximately 66.6.

Learn more about singly charged ion:

https://brainly.com/question/31164600

#SPJ4

Other Questions
At a basketball game, a vender sold a combined total of 102 sodas and hot dogs. The number of sodas sold was two times the number of hot dogs sold. Find the number of sodas and the number of hot dogs sold. the pen for Ruth"s dog is 7 feet long and 6\1\2 feet wide.her friend Ralph's dog pen is 14 feet long and 6\1\2 feet wide. how many times larger is the area of Ralph's dog pen pls i need help with this u get 100 points Pete surveyed his friends as to the amount of their weekly allowance. the responses were $5, $0, $8, $10, $8, $10, $0, $0, and $1. Pete analyzed the results and stated that more than half of his friends earned $8 or more per week. Find his mistake and correct it. Statical queston Prokaryotes play essential roles in the environment as well as in industry. Match the microorganisms and their functions to the correct ecological or industrial role. genetically engineered bacteria used to synthesize drugs and chemicals added to Human Uses of Prokaryotes Solution check for this math problem Mona had 32 math problems for homework. She completed 3/4 of them before dinner and the remaining 1/4 after dinner. How many problems did she complete before dinner? Determine whether the triangles are similar, If similar state how( AA. SSS. SAS) and write a similarity statement. 1 Oligarchy raled2. Boys were lought to steal but not get cought3. Volled beauty and learning4. had slaves5. Women were trained in wrestling and boxing6. Women were not allowed to vote7. valued obedience and military strength8 Direct Democracy 9 Bables were bothed in wine10. valued debate among citizensIdentify all of them if it applies to Sparta or athens or both Help I needed please which of the below is true about cellular respiration? group of answer choices it oxidizes carbon compounds and reduces oxygen it is an anabolic process it is endergonic it includes the calvin cycle and glycolysis all of these canadian radio stations are required to have at least 35% of their content be canadian in origin. a listener sampled his favorite station's content to test whether it is falling short of the quota. in his sample of 100 time intervals, canadian content was playing for 33 of them. what is the test statistic for this test? what evidence best supports the idea that 300 million years ago the southwestern united states was a vast desert of sand? balance the assembly line shown below for (a) a shift output of 60 pieces and (b) a shift output of 45 pieces. assume an 6-hour shift, and use the rule: choose the assignable task with the longest processing time. compute the line efficiency for each case. in 2021, the additional child tax credit of $1,600 (child under 6) or $1,000 available to married taxpayers filing jointly is phased out, beginning at: a.$150,000 b.$400,000 c.$200,000 d.$406,750 for a negative externality, the than the costs imposed on society as a whole. group of answer choices private benefits of an action are more private costs of an action are less social benefits of an action are more social costs of an action are less A student dilutes 15.00 mL of 0.275 M NaNO3 stock solution to a volume of 100.0 mL. What is the final molarity? Fill in the blanks using the available answer choices. The vertices of a quadrilateral are A(3, 1) , B(4, 2) , C(9, 3) and D(2, 4) . Complete the statement to best classify what type of quadrilateral ABCD is. In quadrilateral ABCD , have equal length and there are right angles, so ABCD is best classified as a . a student spotted a tlc plate and ran it in 10% ethyl acetate/hexanes. the tlc obtained showed a streak rather than separate spots for the components. what technical mistake might the student have made? Over the centuries, wigs have been popular accessories in various cultures. In ancient Egypt, both men and women of the nobility wore wigs on special occasions. These wigs were made of human hair and were usually adorned with flowers and gold ornaments. There are even paintings of dead Egyptians wearing wigs. Egyptians believed that everything needed in the afterlife must be buried with the dead.In ancient Rome, blond hair was preferred to dark hair. Therefore, many women wore wigs made from the hair of blond captives.Through the years, wigs went in and out of style, often on the whims of a king or queen. For example, King Louis XIII of France went bald at an early age, so he wore a wig of long, curly locks. In the 1700s, wigs for women were designed with support wires and powder that raised the hair three feet into the air. Some wigs included cages of live birds or models of sailing ships. Only a very agile woman could move easily in such a headpiece without tipping over!What is the main idea of this selection?a. Wigs have been a popular accessory throughout history.b. women who wore very tall wings had to be agilec. Ancient Egyptian and Romans wore wigsd. wigs style were sometimes determined by kings and queens. which of the following correctly identifies the dependent and independent variables in this experiment? responses the color of the light is the dependent variable, and the percentage of plants showing phototropism is the independent variable. the color of the light is the dependent variable, and the percentage of plants showing phototropism is the independent variable. the percentage of plants showing phototropism is the dependent variable, and the color of the light is the independent variable. the percentage of plants showing phototropism is the dependent variable, and the color of the light is the independent variable. the direction of the light is the dependent variable, and the percentage of plants showing phototropism is the independent variable. the direction of the light is the dependent variable, and the percentage of plants showing phototropism is the independent variable. the color of the light is the dependent variable, and the direction of the light is the independent variable.