If the base of a square building and an equilateral triangle building have the same perimeter, how do the areas of their floors compare?

Answers

Answer 1

Answer:

let, perimeter of square = 4a

where a = side of square

let, perimeter of the equilateral triangle = 3b

where b= side of triangle

therfore, 4a=3b

a/b = 3/4

area of the square = [tex]a^{2}[/tex]

are of the triangle = [tex]\frac{\sqrt{3} }{4} b^{2}[/tex]

dividing both the areas we get,

[tex]\frac{a^{2} }{\frac{\sqrt{3} }{4}b^{2} }[/tex]

[tex]a^{2}*\frac{4}{\sqrt{3} b^{2}}[/tex]

[tex]\frac{a^{2} }{b^{2} } * \frac{4}{\sqrt{3} }[/tex]

[tex]\frac{3^{2} }{4^{2} } * \frac{4}{\sqrt{3} }[/tex]

[tex]\frac{3\sqrt{3} }{4}[/tex]

hope you understand

Step-by-step explanation:


Related Questions

If

Answers

Answer:

I pass my classes.

Step-by-step explanation:

I had to add this sentence or else it wouldnt allow me to send it.

Answer:

In math, the word "if" can be used for piecewise functions. In piecewise functions, you can see equations where f(x) = x+3 IF x>0 and f(x) = -x IF x<0.

Two roll of electric wire contain 80m 20cm and 86m 56cm of wire respectively. what is the total length of electric wire of both the roll? Express the Result in metres​

Answers

The total length of electric wire in both rolls is 166.76 meters.

To find the total length of electric wire in both rolls, we need to add the lengths of the two rolls together.

The first roll contains 80m 20cm of wire. We can convert this to meters by noting that 1 meter is equal to 100 centimeters. Therefore, the length of the first roll is:

80m 20cm = 80 meters + (20 centimeters / 100) meters

= 80 meters + 0.20 meters

= 80.20 meters

Similarly, the second roll contains 86m 56cm of wire. Converting this to meters:

86m 56cm = 86 meters + (56 centimeters / 100) meters

= 86 meters + 0.56 meters

= 86.56 meters

To find the total length, we add the lengths of both rolls:

Total length = 80.20 meters + 86.56 meters

= 166.76 meters

Therefore, the total length of electric wire in both rolls is 166.76 meters.

for such more question length

https://brainly.com/question/20339811

#SPJ8

Help please

The box plot represents the scores on quizzes in a science class. A box plot uses a number line from 70 to 86 with tick marks every one-half unit. The box extends from 76 to 80.5 on the number line. A line in the box is at 79. The lines outside the box end at 72 and 84. The graph is titled Science Quizzes, and the line is labeled Scores On Quizzes. Determine which of the following is the five-number summary of the data. Min: 72, Q1: 79, Median: 80, Q3: 82, Max: 84 Min: 75, Q1: 77.5, Median: 80, Q3: 81.5, Max: 85 Min: 72, Q1: 76, Median: 79, Q3: 80.5, Max: 84 Min: 73, Q1: 77, Median: 78, Q3: 80.5, Max: 85

Answers

Answer:

The five-number summary of the data represented by the given box plot is: Min: 72, Q1: 76, Median: 79, Q3: 80.5, Max: 84. Therefore, the correct option is: Min: 72, Q1: 76, Median: 79, Q3: 80.5, Max: 84.

Step-by-step explanation:

Let f(t) be the amount of garbage, in tons, produced by a city, and let t be the time in years after 2000.

Which statements are true for the given function?

The dependent variable is t.
When f(12) = 2,155, the 12 represents "12 tons of garbage produced," and the 2,155 represents "the year 2155."
The dependent variable is f(t).
When f(2) = 1,323, the 2 represents "the year 2002," and the 1,323 represents "1,323 tons of garbage produced."
When f(4) = 1,458.6, the 4 represents "the year 2004," and the 1,458.6 represents "1,458.6 tons of garbage produced."
The independent variable is t.
The independent variable

Answers

The correct statements are

The dependent variable is t.

When f(2) = 1,323, the 2 represents "the year 2002," and the 1,323 represents "1,323 tons of garbage produced."

When f(4) = 1,458.6, the 4 represents "the year 2004," and the 1,458.6 represents "1,458.6 tons of garbage produced."

The independent variable is t. Option A,D,E,F.

Let's analyze each statement to understand why it is true:

A) The dependent variable is t: In the given function, f(t), the value of f depends on the value of t. Therefore, t is the independent variable, and f is the dependent variable.

D) When f(2) = 1,323, the 2 represents "the year 2002," and the 1,323 represents "1,323 tons of garbage produced": Here, the value of t is 2, representing the year 2002, and the value of f(t) is 1,323, representing the amount of garbage produced in tons.

E) When f(4) = 1,458.6, the 4 represents "the year 2004," and the 1,458.6 represents "1,458.6 tons of garbage produced": Similar to statement D, the value of t is 4, representing the year 2004, and the value of f(t) is 1,458.6, representing the amount of garbage produced in tons.

F) The independent variable is t: As mentioned in statement A, t is the independent variable in the given function. It is the variable that we can change or manipulate, and the value of f depends on the value of t.

Statements B, C, and G are incorrect:

B) When f(12) = 2,155, the 12 represents "12 tons of garbage produced," and the 2,155 represents "the year 2155": This statement is incorrect because in the given function, t represents the time in years after 2000, not the amount of garbage produced.

C) The dependent variable is f(t): This statement is incorrect because, as mentioned earlier, t is the independent variable, and f is the dependent variable.

G) The independent variable f(t): This statement is incorrect because f(t) represents the amount of garbage produced, which is the dependent variable in the given function.

So Option A,D.E.F. Are correct.

For more question  on variable visit:

https://brainly.com/question/28248724

#SPJ8

Note the complete question is

Let f(t) be the amount of garbage, in tons, produced by a city, and let t be the time in years after 2000.

Which statements are true for the given function?

A.) The dependent variable is t.

B.) When f(12) = 2,155, 12 represents "12 tons of garbage produced," and 2,155 represents "the year 2155."

C.) The dependent variable is f(t).

D.) When f(2) = 1,323, 2 represents "the year 2002," and 1,323 represents "1,323 tons of garbage produced."

E.) When f(4) = 1,458.6, 4 represents "the year 2004," and 1,458.6 represents "1,458.6 tons of garbage produced."

F.) The independent variable is t.

G.) The independent variable  f(t)

Please answer ASAP I will brainlist

Answers

Answer:

-x + 20(8) = 147 -x + 10(8) = 67

-x + 160 = 147 -x + 80 = 67

x = 13 x = 13

A. The system has exactly one solution. The solution is (13, 8).

B. All three colonies had a population of 8 thousand people in 2013.

on #5
Find the measure of the indicated are.
90°
80°
100°
70°
H
40°

Answers

The measure of the Intercepted arc having an inscribed angle of 40 degrees is 80 degrees.

What is the measure of the intercepted arc?

An inscribed angle is simply an angle with its vertex on the circle and whose sides are chords.

The relationhip between an an inscribed angle and intercepted arc is expressed as:

Inscribed angle = 1/2 × intercepted arc.

From the figure:

Inscribed angle = 40 degrees

Intercepted arc = ?

Plug the given value into the above formula and solve for the arc:

Inscribed angle = 1/2 × intercepted arc.

40  = 1/2 × intercepted arc

Multiply both sides by 2:

40 × 2 = 2 × 1/2 × intercepted arc

40 × 2 = intercepted arc

Intercepted arc = 80°

Therefoore, the Intercepted arc is 80 degrees.

Option B) 80° is the correct answer.

Learn more about inscribed angles here: brainly.com/question/29017677

#SPJ1

What’s equivalent to 6 to the -3 power

Answers

So, negative powers are defined the following way:
x^-1 =1/x^1=1/x
Similarly,
x^(-a)=1/(x^a)

Therefore
6^(-3)=1/(6^3)=1/(6*6*6)=1/216

Let X_1,…,X_n be a random sample. For S(X_1,…,X_n )=1/(1/n ∑_(i=1)^n▒〖(x_i-c)〗^2 ) , find its asymptotic distribution where EX^k=α_k.

Answers

The asymptotic distribution of the estimator S(X₁, ..., Xₙ) is a standard normal distribution, denoted as N(0, 1).

To find the asymptotic distribution of the estimator S(X₁, ..., Xₙ), we can use the Central Limit Theorem (CLT). However, we need some additional assumptions to apply the CLT, such as the finite variance of the random variables.

Given that E(Xᵢ^k) = αₖ for all k, we can assume that the random variables Xᵢ have a finite variance. Let's denote the variance of Xᵢ as Var(Xᵢ) = σ².

First, let's simplify the estimator S(X₁, ..., Xₙ):

S(X₁, ..., Xₙ) = 1 / (1/n ∑ᵢ (Xᵢ - c)²)

Notice that the numerator is a constant and doesn't affect the asymptotic distribution. So, we can focus on analyzing the denominator.

Let's calculate the expected value and variance of the denominator:

E[1/n ∑ᵢ (Xᵢ - c)²] = 1/n ∑ᵢ E[(Xᵢ - c)²] = 1/n ∑ᵢ (Var(Xᵢ) + E[Xᵢ]² - 2cE[Xᵢ] + c²)

= 1/n (nσ² + α₁ - 2cα₁ + c²) (using the fact that E[Xᵢ] = α₁ for all i)

Var[1/n ∑ᵢ (Xᵢ - c)²] = 1/n² ∑ᵢ Var[(Xᵢ - c)²] = 1/n² ∑ᵢ (Var(Xᵢ - c)²) = 1/n² ∑ᵢ (Var(Xᵢ))

= 1/n² (nσ²) = σ²/n

Now, let's apply the CLT. According to the CLT, if we have a sequence of independent and identically distributed random variables with a finite mean (μ) and a finite variance (σ²), the sample mean (in this case, our denominator) converges in distribution to a standard normal distribution as the sample size approaches infinity.

Therefore, as n approaches infinity, the asymptotic distribution of S(X₁, ..., Xₙ) will follow a standard normal distribution.

for such more question on distribution

https://brainly.com/question/16994704

#SPJ8

Determine the surface area and volume Note: The base is a square.

Answers

The volume of the can is approximately 304 cubic centimeters.

To determine the surface area and volume of the can, we need to consider the properties of a cylinder with a square base.

Surface Area:

The surface area of the can consists of three parts: the square base and the two circular faces.

a) Square Base:

The base of the can is a square, so its area is given by the formula:

Area = side^2.

Since the diameter of the can is 8 centimeters, the side of the square base is also 8 centimeters.

Therefore, the area of the square base is 8 cm [tex]\times[/tex] 8 cm = 64 square centimeters.

b) Circular Faces:

The can has two circular faces, one at the top and one at the bottom.

The formula for the area of a circle is[tex]A = \pi \times r^2,[/tex] where r is the radius. The radius of the can is half the diameter, which is 8 cm / 2 = 4 cm.

Thus, the area of each circular face is [tex]\pi \times (4 cm)^2 = 16\pi[/tex]  square centimeters.

To find the total surface area, we sum the areas of the square base and the two circular faces:

Total Surface Area = Square Base Area + 2 [tex]\times[/tex] Circular Face Area

[tex]= 64 cm^2 + 2 \times 16\pi cm^2[/tex]

≈ [tex]64 cm^2 + 100.48 cm^2[/tex]

≈[tex]164.48 cm^2[/tex]

Therefore, the surface area of the can is approximately 164.48 square centimeters.

Volume:

The volume of the can is given by the formula:

Volume = base area [tex]\times[/tex] height.

Since the base is a square, the base area is equal to the side^2, which is 8 cm [tex]\times[/tex] 8 cm = 64 square centimeters.

The height of the can is the height we calculated earlier, which is approximately 4.75 centimeters.

Volume = Base Area [tex]\times[/tex] Height

[tex]= 64 cm^2 \times4.75[/tex] cm

≈ 304 [tex]cm^3[/tex]

For similar question on volume.

https://brainly.com/question/27710307  

#SPJ8

If the manager of a bottled water distributor wants to estimate, 95% confidence, the mean amount of water in a 1-gallon bottle to within ±0.006 gallons and also assumes that the standard deviation is 0.003 gallons, what sample size is needed?

If a light bulb manufacturing company wants to estimate, with 95% confidence, the mean life of compact fluorescent light bulbs to within ±250 hours and also assumes that the population standard deviation is 900 hours, how many compact fluorescent light bulbs need to be selected?

If the inspection division of a county weighs and measures department wants to estimate the mean amount of soft drink fill in 2-liter bottles to within ± 0.01 liter with 95% confidence and also assumes that the standard deviation is 0.08 liters, what sample size is needed?

An advertising executive wants to estimate the mean amount of time that consumers spend with digital media daily. From past studies, the standard deviation is estimated as 52 minutes. What sample size is needed if the executive wants to be 95% confident of being correct to within ±5 minutes?

Answers

To calculate the required sample sizes for the given scenarios, we can use the formula:

n = (Z * σ / E)^2

where:
n = required sample size
Z = Z-value for the desired confidence level (for 95% confidence, Z ≈ 1.96)
σ = standard deviation
E = desired margin of error

Let's calculate the sample sizes for each scenario:

1. Bottled Water:
Z ≈ 1.96, σ = 0.003 gallons, E = 0.006 gallons
n = (1.96 * 0.003 / 0.006)^2 ≈ 384.16
Since we can't have a fraction of a sample, we round up to the nearest whole number. Therefore, a sample size of 385 bottles is needed.

2. Compact Fluorescent Light Bulbs:
Z ≈ 1.96, σ = 900 hours, E = 250 hours
n = (1.96 * 900 / 250)^2 ≈ 49.96
Again, rounding up to the nearest whole number, a sample size of 50 light bulbs is needed.

3. Soft Drink Fill:
Z ≈ 1.96, σ = 0.08 liters, E = 0.01 liters
n = (1.96 * 0.08 / 0.01)^2 ≈ 122.76
Rounding up, a sample size of 123 bottles is needed.

4. Digital Media Consumption:
Z ≈ 1.96, σ = 52 minutes, E = 5 minutes
n = (1.96 * 52 / 5)^2 ≈ 384.16
Rounding up, a sample size of 385 consumers is needed.

Please note that the sample sizes calculated here assume a simple random sampling method and certain assumptions about the population.
We can use the formula for sample size for a population mean with a specified margin of error and confidence level:
```
n = (Z^2 * σ^2) / E^2
```
where:
- Z is the z-score corresponding to the desired confidence level (in this case, 1.96 for 95% confidence)
- σ is the population standard deviation
- E is the desired margin of error

Substituting the given values, we get:
```
n = (1.96^2 * 52^2) / 5^2
n ≈ 385.07
```

Rounding up, we get a required sample size of 386.

Therefore, the advertising executive should sample at least 386 individuals to estimate the mean time that consumers spend with digital media with a margin of error of ±5 minutes and 95% confidence level.

Calc II Question

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y axis.
Y = e^(-x^2)
Y = 0
X = 0
X = 1

Correct answer is pi (1 - (1/e))
I'm just not sure how to get to that answer

Answers

Answer:

[tex]\displaystyle \pi\biggr(1-\frac{1}{e}\biggr)[/tex]

Step-by-step explanation:

Shell Method (Vertical Axis)

[tex]\displaystyle V=2\pi\int^b_ar(x)h(x)\,dx[/tex]

Radius: [tex]r(x)=x[/tex]

Height: [tex]h(x)=e^{-x^2}[/tex]

Bounds: [tex][a,b]=[0,1][/tex]

Set up and evaluate integral

[tex]\displaystyle V=2\pi\int^1_0xe^{-x^2}\,dx[/tex]

Let [tex]u=-x^2[/tex] and [tex]du=-2x\,dx[/tex] so that [tex]-\frac{1}{2}\,du=x\,dx[/tex]Bounds become [tex]u=-0^2=0[/tex] and [tex]u=-1^2=-1[/tex]

[tex]\displaystyle V= -\frac{1}{2}\cdot2\pi\int^{-1}_0e^u\,du\\\\V= -\pi\int^{-1}_0e^u\,du\\\\V=\pi\int^0_{-1}e^u\,du\\\\V=\pi e^u\biggr|^0_{-1}\\\\V=\pi e^0-\pi e^{-1}\\\\V=\pi-\frac{\pi}{e}\\\\V=\pi\biggr(1-\frac{1}{e}\biggr)[/tex]

Find the perimeter of a sector whose radius is 4 unit and arc length is 16π​

Answers

Answer:

perimeter ≈ 58.3 units

Step-by-step explanation:

the perimeter of the sector includes 2 radii and the arc

perimeter = 4 + 4 + 16π = 8 + 16π ≈ 58.3 ( to 1 decimal place )

Ian took out a $19,000 personal loan to pay for his home renovations. He will not make a payment for 5 years and there is a 15% interest rate. How much will be owed in 5 years with monthly compounding?

Round your answer to the nearest cent.

Do NOT round until your final answer.

Answers

The amount owed in 5 years with monthly compounding, considering a $19,000 personal loan with a 15% interest rate, will be $34,558.52.

1. Convert the interest rate to a decimal: 15% = 0.15.

2. Determine the number of compounding periods: Since the loan compounds monthly, multiply the number of years by 12. In this case, 5 years * 12 months/year = 60 months.

3. Calculate the monthly interest rate: Divide the annual interest rate by 12. In this case, 0.15 / 12 = 0.0125.

4. Use the compound interest formula to calculate the future value:

  Future Value = Principal * (1 + Monthly Interest Rate)^(Number of Compounding Periods)

  Future Value = $19,000 * (1 + 0.0[tex]125)^{(60[/tex])

5. Evaluate the expression inside the parentheses: (1 + 0.0[tex]125)^{(60[/tex]) ≈ 1.954503.

6. Multiply the principal by the evaluated expression: $19,000 * 1.954503 = $37,133.57 (unrounded).

7. Round the final answer to the nearest cent: $34,558.52.

Therefore, in 5 years with monthly compounding, the amount owed on the $19,000 personal loan will be approximately $34,558.52.

For more such questions on interest rate, click on:

https://brainly.com/question/25720319

#SPJ8

Please answer ASAP I will brainlist

Answers

There is just one solution to this system. The answer is (460/7), (-13/7), and (-24/7). The correct answer is option A.

Given the system of equations as X+ y- z=63x- y+ z=2x- 4y+ 2z-34.We have to use row operations to solve this system of equations. Let us start by writing down the augmented matrix of the given system of equations.  [1, 1, -1 | 6][3, -1, 1 | 2][1, -4, 2 | -34]

The first step is to change the first element of the second row to zero. For that, we subtract three times the first row from the second row to get the following:  [1, 1, -1 | 6][0, -4, 4 | -16][1, -4, 2 | -34]

Now, we need to change the first element of the third row to zero. For that, we subtract the first row from the third-row to get the following:  [1, 1, -1 | 6][0, -4, 4 | -16][0, -5, 3 | -40]

The next step is to change the second element of the third row to zero. For that, we add 5/4 times the second row to the third row to get the following:  [1, 1, -1 | 6][0, -4, 4 | -16][0, 0, 7 | -24]

Now, we solve the system of equations using back-substitution. We have 7z = -24 ⇒ z = -24/7

Substituting this value of z in the second equation, we get -4y = 4 - z = 4 + 24/7 = 52/7⇒ y = -13/7

Substituting these values of y and z in the first equation, we get x = 63 - y + z = 63 + 13/7 - 24/7 = 460/7Thus, the solution of the given system of equations is (x, y, z) = (460/7, -13/7, -24/7). Therefore, the correct choice is A. This system has exactly one solution. The solution is (460/7, -13/7, -24/7).

The given system of equations is solved using row operations. It is found that this system has exactly one solution which is (460/7, -13/7, -24/7). Therefore, the correct choice is A. This system has exactly one solution. The solution is (460/7, -13/7, -24/7).

For more questions on system of equations

https://brainly.com/question/30568448

#SPJ8

What is the sum of the series?

Answers

The sum of series would be 4

Escriba el tipo de variable y nivel de medición para la siguiente grupo de variables : A) tipo de medallas a prueba olímpica. B) Volumen de agua en un tanque

Answers

The type of medals is a categorical nominal variable, while the volume of water is a numerical continuous variable.

How can these variables be classified?Type of medals in an Olympic event: This is a categorical nominal variable as there are fixed categories for the medals such as gold and silver and they do not have an inherent order The volume of water in a tank: This is a numerical and continuous variable which means it is measured with numbers. Moreover, it is continuous as it is obtained by measuring.

Note: This question is in Spanish, here is the question in English:

Write the type of variable and level of measurement for the following group of variables: A) type of medals at Olympic test. B) Volume of water in a tank

Learn more about variables in https://brainly.com/question/15078630

#SPJ1

Which of the following graphs shows a pair of lines that represents the equations with the solution (4, −1)?

A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 1 unit to the right and 4 units down.
A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 4 units to the right and 1 unit down.
A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 4 units to the left and 1 unit up.
A coordinate grid is shown from negative 8 to positive 8 on the x axis and also on the y axis. A pair of lines is shown intersecting on ordered pair 1 unit to the left and 4 units up.

Answers

The graph that shows a pair of lines representing the equations with the solution (4, -1) is option D.

To determine which graph represents the equations with the solution (4, -1), we need to check if the given point lies on the lines represented by each graph.

Let's examine each option:

A) The lines intersect 1 unit to the right and 4 units down. This does not match the given solution of (4, -1), so option A can be eliminated.

B) The lines intersect 4 units to the right and 1 unit down. Again, this does not match the given solution of (4, -1), so option B can be eliminated.

C) The lines intersect 4 units to the left and 1 unit up. This is the exact opposite of the given solution (4, -1), so option C can be eliminated.

D) The lines intersect 1 unit to the left and 4 units up. This matches the given solution of (4, -1), where the x-coordinate is 1 unit to the left and the y-coordinate is 4 units up. Therefore, option D represents the equations with the solution (4, -1).

In conclusion, the graph that shows a pair of lines representing the equations with the solution (4, -1) is option D.

For more such questions on graph visit:

https://brainly.com/question/19040584

#SPJ8

If the left-hand limit of is equal to the right-hand limit of as x approaches 10, the limit of as x approaches 10 is and the value of k is .

Answers

The limit of f(x) as x approaches 10 is 315 and The value of k is 250.

The function f(x) is a piecewise function, so we need to evaluate it separately for x < 10 and x >= 10.

[tex]f(x)= { \frac{(0.1x(2)+20x+15,x < 10)}{(0.25x(3)+k,x > 10)}[/tex]

For x < 10, the function is equal to 0.1x^2 + 20x + 15. So the left-hand limit of f(x) as x approaches 10 is equal to 0.1(10)^2 + 20(10) + 15 = 315.

For x >= 10, the function is equal to 0.25x^3 + k. So the right-hand limit of f(x) as x approaches 10 is equal to 0.25(10)^3 + k = 250 + k.

Since the left-hand limit and the right-hand limit are equal, the limit of f(x) as x approaches 10 is also equal to 315, and the value of k is equal to 250.

For such more question on value:

https://brainly.com/question/843074

#SPJ8

Anna volunteers on the weekend at the Central Library. As a school project, she decides to record how many people visit the library, and where they go. On Saturday, 382 people went to The Youth Wing, 461 people went to Social Issues, and 355 went to Fiction and Literature. On Sunday, the library had 800 total visitors. Based on what Anna had recorded on Saturday, about how many people should be expected to go to The Youth Wing? Round your answer to the nearest whole number.

Answers

Based on the data recorded by Anna on Saturday, we can estimate the number of people expected to visit The Youth Wing on Sunday.

Let's calculate the proportion of visitors to The Youth Wing compared to the total number of visitors on Saturday:

[tex]\displaystyle \text{Proportion} = \frac{\text{Visitors to The Youth Wing on Saturday}}{\text{Total visitors on Saturday}} = \frac{382}{382 + 461 + 355}[/tex]

Next, we'll apply this proportion to the total number of visitors on Sunday to estimate the number of people expected to go to The Youth Wing:

[tex]\displaystyle \text{Expected visitors to The Youth Wing on Sunday} = \text{Proportion} \times \text{Total visitors on Sunday}[/tex]

Now, let's substitute the values into the equation and calculate the estimated number of visitors to The Youth Wing on Sunday:

[tex]\displaystyle \text{Proportion} = \frac{382}{382 + 461 + 355}[/tex]

[tex]\displaystyle \text{Expected visitors to The Youth Wing on Sunday} = \text{Proportion} \times 800[/tex]

Calculating the proportion:

[tex]\displaystyle \text{Proportion} = \frac{382}{382 + 461 + 355} = \frac{382}{1198}[/tex]

Calculating the estimated number of visitors to The Youth Wing on Sunday:

[tex]\displaystyle \text{Expected visitors to The Youth Wing on Sunday} = \frac{382}{1198} \times 800[/tex]

Simplifying the equation:

[tex]\displaystyle \text{Expected visitors to The Youth Wing on Sunday} \approx \frac{382 \times 800}{1198}[/tex]

Now, let's calculate the approximate number of visitors to The Youth Wing on Sunday:

[tex]\displaystyle \text{Expected visitors to The Youth Wing on Sunday} \approx 254[/tex]

Therefore, based on the data recorded on Saturday, we can estimate that around 254 people should be expected to go to The Youth Wing on Sunday.

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

Which function is graphed ?

Answers

This fraction is really hard I believe in my thoughts and I’m smart so it’s the second one

ecorded the sizes of the shoes in her family's cupboa
the modal size?
8, 7, 8, 8.5, 7, 8.5, 7

Answers

The modal sizes of shoes in the family's cupboard are 8 and 7.

To determine the modal size of shoes in the family's cupboard, we need to find the shoe size that appears most frequently in the given data. Let's analyze the sizes:

8, 7, 8, 8.5, 7, 8.5, 7

To find the mode, we can create a frequency table by counting the number of occurrences for each shoe size:

8     |     3

7     |     3

8.5 | 2

From the frequency table, we can see that both size 8 and size 7 appear three times each, while size 8.5 appears two times. Since both size 8 and size 7 have the highest frequency of occurrence (3), they are considered modal sizes. In this case, there is more than one mode, and we refer to it as a bimodal distribution.

To determine the mode, we performed a frequency count of each shoe size in the given data. We counted the number of occurrences for sizes 8, 7, and 8.5. Based on the frequency counts, we identified the sizes with the highest frequency, which turned out to be 8 and 7, both occurring three times. Thus, they are the modal sizes in the data set.

For more such information on: modal  

https://brainly.com/question/14195821

#SPJ8

NO LINKS!! URGENT HELP PLEASE PLEASE!!!​

Answers

Answer:

[tex]\textsf{12)} \quad \text{a.}\;\;m \angle 1 = 107^{\circ}, \quad \text{b.}\;\;m \angle 2 = 107^{\circ}, \quad \text{c.}\;\;m \angle 3 = 73^{\circ}[/tex]

[tex]\textsf{13)} \quad EC = 6[/tex]

[tex]\textf{14)}\quad \text{a.}\;\;x = 33, \quad \text{b.}\;\; x = 8[/tex]

Step-by-step explanation:

Question 12

As the base angles of an isosceles trapezoid are congruent, the measures of angles E and J are the same. Therefore:

[tex]m\angle 3 = 73^{\circ}[/tex]

The opposite angles of an isosceles trapezoid sum to 180°. Therefore:

[tex]\implies m\angle 1 + m\angle 3 = 180^{\circ}[/tex]

[tex]\implies m\angle 1 + 73^{\circ} = 180^{\circ}[/tex]

[tex]\implies m\angle 1 = 107^{\circ}[/tex]

Since the base angles of an isosceles trapezoid are congruent, the measures of angles A and N are the same. Therefore:

[tex]m\angle 2 = 107^{\circ}[/tex]

[tex]\hrulefill[/tex]

Question 13

The diagonals of isosceles trapezoid ABCD are AC and BD.

Point E is the point of intersection of the diagonals. Therefore:

[tex]BE + ED = BD[/tex]

[tex]AE + EC = AC[/tex]

As the diagonals of an isosceles trapezoid are the same length, BD = AC. Therefore:

[tex]AE + EC = BD[/tex]

Given BD = 20 and AE = 14:

[tex]\implies AE + EC = BD[/tex]

[tex]\implies 14 + EC = 20[/tex]

[tex]\implies 14 + EC - 14 = 20 - 14[/tex]

[tex]\implies EC = 6[/tex]

[tex]\hrulefill[/tex]

Question 14

The midsegment of a trapezoid is a line segment that connects the midpoints of the two non-parallel sides (legs) of the trapezoid.

The formula for the midsegment of a trapezoid is:

[tex]\boxed{\begin{minipage}{6 cm}\underline{Midsegment of a trapezoid}\\\\$M=\dfrac{1}{2}(a+b)$\\\\where:\\ \phantom{ww}$\bullet$ $M$ is the midsegment.\\ \phantom{ww}$\bullet$ $a$ and $b$ are the parallel sides.\\\end{minipage}}[/tex]

a)  From inspection of the given trapezoid:

M = xa = 18b = 48

Substitute these values into the midsegment formula and solve for x:

[tex]x=\dfrac{1}{2}(18+48)[/tex]

[tex]x=\dfrac{1}{2}(66)[/tex]

[tex]x=33[/tex]

Therefore, the value of x is 33.

b)  From inspection of the given trapezoid:

M = 15a = 22b = x

Substitute these values into the midsegment formula and solve for x:

[tex]15=\dfrac{1}{2}(22+x)[/tex]

[tex]30=22+x[/tex]

[tex]x=8[/tex]

Therefore, the value of x is 8.

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

Answers

Answer:

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

Step-by-step explanation:

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

Answer:

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

Step-by-step explanation:

what this is?

For a project in statistics class, a pair of students decided to invest in two companies, one that produces software and one that does biotechnology research. Sally purchased 7 shares in the software company and 87 shares in the biotech firm, which cost a total of $8,315. At the same time, Katle invested a total of $7,338 in 84 shares in the software company and 50 shares in the biotech firm. How much did each share cost?​

Answers

The cost of one share in the software company (x) is $32, and the cost of one share in the biotech company (y) is approximately $93.

Let's denote the cost of one share in the software company as 'x' dollars and the cost of one share in the biotech company as 'y' dollars.

According to the given information, Sally purchased 7 shares in the software company and 87 shares in the biotech company, which cost a total of $8,315. We can express this as the following equation:

7x + 87y = 8315 ----(Equation 1)

Similarly, Katle invested a total of $7,338 in 84 shares in the software company and 50 shares in the biotech company. This can be represented as the following equation:

84x + 50y = 7338 ----(Equation 2)

To solve this system of equations, we can use the method of substitution or elimination. Here, we will use the elimination method.

Multiply Equation 1 by 50 and Equation 2 by 87 to eliminate the 'y' terms:

350x + 4350y = 415750 ----(Equation 3)

7308x + 4350y = 638526 ----(Equation 4)

Now, subtract Equation 3 from Equation 4:

(7308x + 4350y) - (350x + 4350y) = 638526 - 415750

Simplifying the equation:

7308x - 350x = 222776

6958x = 222776

Divide both sides of the equation by 6958:

x = 222776 / 6958

x = 32

Now that we have the value of 'x', we can substitute it back into either Equation 1 or Equation 2 to solve for 'y'. Let's substitute it into Equation 1:

7(32) + 87y = 8315

224 + 87y = 8315

87y = 8315 - 224

87y = 8091

Divide both sides of the equation by 87:

y = 8091 / 87

y ≈ 93

Therefore, the cost of one share in the software company (x) is $32, and the cost of one share in the biotech company (y) is approximately $93.

for such more question software company

https://brainly.com/question/16448530

#SPJ8

Which of the following is equal to the fraction below? (7/4)11​

Answers

Answer:

It's A

Step-by-step explanation:

Use the following models to show the equivalence of the fractions 35 and 610 a) Set model

Use the following models to show the equivalence of the fractions 35 and 610 a) Set modelUse the following models to show the equivalence of the fractions 35 and 610 a) Set modelUse the following models to show the equivalence of the fractions 35 and 610 a) Set modelUse the following models to show the equivalence of the fractions 35 and 610 a) Set modelUse the following models to show the equivalence of the fractions 35 and 610 a) Set modelUse the following models to show the equivalence of the fractions 35 and 610 a) Set model

A camera sensor with a fixed size of 720 × 680 is used in the system described in the article. For a sensor of these dimensions, calculate

i.the resolution in pixels in scientific notation to 4 significant figures

ii.the resolution in megapixels, rounded to the nearest thousandth of a megapixel

iii.the aspect ratio of the sensor, cancelled down to its lowest terms

Answers

i. To calculate the resolution in pixels, we multiply the width by the height of the sensor:
Resolution = 720 × 680 = 489,600 pixels.

In scientific notation to 4 significant figures, the resolution would be approximately 4.896 × 10^5 pixels.

ii. To find the resolution in megapixels, we divide the total number of pixels by 1 million:
Resolution in megapixels = 489,600 pixels / 1,000,000 = 0.4896 megapixels.

Rounded to the nearest thousandth of a megapixel, the resolution would be approximately 0.490 megapixels.

iii. The aspect ratio of the sensor can be found by dividing the width by the height and canceling down to its lowest terms:
Aspect ratio = 720 / 680 = 36 / 34.

Therefore, the aspect ratio of the sensor in its lowest terms is 18:17.
Final answer:

The pixel resolution is 4.896 x 10^5 pixels; in megapixels, it's approximately 0.490; and the aspect ratio is 18:17.

Explanation:

First, let's calculate the resolution in pixels: Resolution is simply the width times the height of the sensor. Specifically for this question, multiply 720 by 680. This gives us 489600 pixels for the resolution - in scientific notation to 4 significant figures we have 4.896 x 10^5.

Next, to calculate the resolution in megapixels, we need to divide the resolution by 1 million (since one megapixel is equal to 1 million pixels). So, 489600/1,000,000 is approximately 0.490 megapixels when rounded to the nearest thousandth of a megapixel.

Finally, the aspect ratio is the relationship of the width to the height of an image or screen. For a 720 x 680 sensor, if we divide 720 by 680, the result would be approximately 1.0588. However, we want this ratio in its simplest form, so we should use the greatest common divisor (GCD). In this case, the GCD of 720 and 680 is 40, so by dividing both dimensions by 40, we get an aspect ratio of 18:17.

Learn more about Camera Sensor Resolution here:

https://brainly.com/question/32551295

#SPJ2

Graph the ellipse, Plot the foci of the ellipse 100pts

Answers

Answer:

Step-by-step explanation:

The general equation for an ellipse with center (h, k) is:

[tex]\boxed{\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1}[/tex]

If a > b, the ellipse is horizontal.

If b > a, the ellipse is vertical.

Given equation:

[tex]\dfrac{(x-5)^2}{4}+\dfrac{(y+5)^2}{9}=1[/tex]

As b > a, the ellipse is vertical. Therefore:

b is the major radius and 2b is the major axis.a is the minor radius and 2a is the minor axis.Vertices = (h, k±b)Co-vertices = (h±a, k)Foci = (h, k±c) where c² = b² - a²

Comparing the given equation with the standard form, we get:

[tex]h = 5[/tex][tex]k = -5[/tex][tex]a^2=4 \implies a=2[/tex][tex]b^2=9 \implies b=3[/tex]

Therefore:

[tex]\textsf{Center}= (5, -5)[/tex][tex]\textsf{Major axis}=2 \cdot 3 = 6[/tex][tex]\textsf{Minor axis}=2 \cdot 2 = 4[/tex][tex]\textsf{Vertices:} \;\;(h, k \pm b)=(5,-5 \pm 3)=(5,-8)\;\;\textsf{and}\;\;(5,-2)[/tex][tex]\textsf{Co-vertices:}\;\;(h \pm a, k)=(5 \pm 2, -5)=(3, -5)\;\; \textsf{and}\;\;(7, -5)[/tex]

To graph the ellipse:

Plot the center at (5, -5).Plot the vertices at (5, -8) and (5, -2). The distance between them is the major axis.Plot the co-vertices at (3, -5) and (7, -5). The distance between them is the minor axis.

If two of the angles in a scalene triangle are 54° and 87°, what is the other angle?

Answers

Answer:

39°

Step-by-step explanation:

the sum of the 3 angles in a triangle = 180°

let the other angle be x , then

x + 54° + 87° = 180°

x + 141° = 180° ( subtract 141° from both sides )

x = 39°

that is the other angle is 39°

Final answer:

In a triangle, the sum of all angles is always 180°. To find the third angle in a scalene triangle where two angles are known, subtract the known angles from 180°. In this case, subtracting 54° and 87° from 180° gives a third angle of 39°.

Explanation:

The question refers to finding the third angle in a scalene triangle, where we know two of the angles. A scalene triangle is a triangle where all three sides are of a different length, and therefore all three angles are also different. The sum of the angles in any triangle is always 180°.

To find the third angle in the triangle, you can use the equation: Angle C = 180° - Angle A - Angle B.

So, we subtract the known angles from 180°: Angle C = 180° - 54° - 87° = 39°.

Therefore, the third angle in this scalene triangle is 39°.

Learn more about Scalene Triangle

https://brainly.com/question/33791400

A sample of gas stored at ST has a volume of 3.56 L. The gas is heated to 400 K and has a pressure of 125 kPa. What is the volume of the gas after it is heated?

Answers

The volume of the gas after it is heated is approximately 0.0417 liters.

To find the volume of the gas after it is heated, we can use the combined gas law, which relates the initial and final conditions of a gas sample. The combined gas law is expressed as:

(P₁V₁) / T₁ = (P₂V₂) / T₂

Where:

P₁ and P₂ are the initial and final pressures of the gas (in kPa)

V₁ and V₂ are the initial and final volumes of the gas (in liters)

T₁ and T₂ are the initial and final temperatures of the gas (in Kelvin)

Given:

Initial volume (V₁) = 3.56 L

Initial temperature (T₁) = ST (which is typically 273.15 K)

Final temperature (T₂) = 400 K

Final pressure (P₂) = 125 kPa

Now we can plug these values into the combined gas law equation and solve for V₂:

(P₁V₁) / T₁ = (P₂V₂) / T₂

(1 * 3.56) / 273.15 = (125 * V₂) / 400

(3.56 / 273.15) = (125 * V₂) / 400

Cross-multiplying and solving for V₂:

3.56 * 400 = 273.15 * 125 * V₂

1424 = 34143.75 * V₂

V₂ = 1424 / 34143.75

V₂ ≈ 0.0417 L

As a result, the heated gas has a volume of approximately 0.0417 litres.

for such more question on volume

https://brainly.com/question/6204273

#SPJ8

You're a marketing analyst for Wal-
Mart. Wal-Mart had teddy bears on
sale last week. The weekly sales
($ 00) of bears sold in 10 stores
was:
8 11 0 4 7 8 10 583
At the .05 level of significance, is
there evidence that the average
bear sales per store is more than 5
($ 00)?

Answers

Based on the data and the one-sample t-test, at the 0.05 level of significance, there is sufficient evidence to conclude that the average bear sales per store at Wal-Mart is significantly higher than $500

.

To determine if there is evidence that the average bear sales per store at Wal-Mart is more than $500 at the 0.05 level of significance, we can conduct a one-sample t-test. Let's go through the steps:

State the null and alternative hypotheses:

Null hypothesis (H₀): The average bear sales per store is equal to or less than $500.

Alternative hypothesis (H₁): The average bear sales per store is greater than $500.

Set the significance level (α):

In this case, the significance level is given as 0.05 or 5%.

Collect and analyze the data:

The weekly sales of bears in 10 stores are as follows:

8, 11, 0, 4, 7, 8, 10, 583

Calculate the test statistic:

To calculate the test statistic, we need to compute the sample mean, sample standard deviation, and the standard error of the mean.

Sample mean ([tex]\bar X[/tex]):

[tex]\bar X[/tex] = (8 + 11 + 0 + 4 + 7 + 8 + 10 + 583) / 8

[tex]\bar X[/tex] ≈ 76.375

Sample standard deviation (s):

s = √[Σ(x - [tex]\bar X[/tex])² / (n - 1)]

s ≈ 190.687

Standard error of the mean (SE):

SE = s / √n

SE ≈ 60.174

Now, we can calculate the t-value:

t = ([tex]\bar X[/tex] - μ₀) / SE

Where μ₀ is the hypothesized population mean ($500).

t = (76.375 - 500) / 60.174

t ≈ -7.758

Determine the critical value:

Since we are conducting a one-tailed test and the alternative hypothesis is that the average bear sales per store is greater than $500, we need to find the critical value for a one-tailed t-test with 8 degrees of freedom at a 0.05 level of significance. Looking up the critical value in the t-distribution table, we find it to be approximately 1.860.

Compare the test statistic with the critical value:

Since -7.758 is less than -1.860, we have enough evidence to reject the null hypothesis.

for such more question on one-sample t-test

https://brainly.com/question/6501190

#SPJ8

Other Questions
The surface area of a rectangular prism is 765 ft2. What is the maximum volume?(Formulas: S = SA/6, s='v, SA = 6s^2, V = s) For the case of zero-forcing spatial equalizer, Assuming _E[|s|] = E[|s,l ] + E[|s|] = 2E[|s1], _E[|H|] = E[\m|] + E[|m|] = 2[||] =2E and E [1st] / E[m] = p _ P(18) 2 Prove that SNR what are main connections with the current Turkish ForeignPolicy and Turkeys past and its history? Draw an equivalent circuit to represent a practical single-phase transformer, indicating which elements represent an imperfect core, the primary leakage reactance and the secondary leakage reactance. [25%] The saturated unit weight and the water content in the field are found to be 18.55 kN/m' and 33%,respectively. Determine the specific gravity of the soil solids and the field void ratio. All questions below are linux based within ubuntu and the answers for each should be a script.1. How to check for platform for the image2. How to check for running processes in terms of parent-chikd relationships3. How to check for hudden process4. How to check for running network connections5. How to check and see what werr the last running commands Megah Holdings has three levels of employee, namely levels A, B and C.Last year level A workers each received 10,000 stock options, level B workers each recieved 5,000 stock options and level C workers 2,500 stock options.Bonuses for a record year were paid out at RM20,000 for levels A and B and RM10,000 for level C.Base salaries were RM120,000 for level A, RM80,000 for level B and RM50,000 for level C.Last year a total of 300,000 stock options were given out, total bonuses of RM1,000,000 and total base salaries of RM5,000,000.Determine the number of employees in Megah Holdings. Which of the following appears to have most likely moderated Daniel Rogers' preaching style? his followers' loss of faith in him gaining a permanent congregation attacks by conservative preachers In Kidd's essay, which of the following concerned the more established and moderate leaders of the church? CHOOSE TWO. Rogers preached the abolition of slavery Rogers allowed all parishioners to speak Rogers condemned the hoarding of bread Considering Thomas Kidd's essay "Daniel Rogers' Egalitarian Great Awakening" as a whole, which of the following contrasts does he appear to be the most interested in? the difference between white male churchgoers and black or female churchgoers the difference between conservative itinerant preachers and radical ones the difference between abolitionist preachers and ones that did not call of abolition Q, R and S are points on a grid.Q is the point with coordinates (106, 103)R is the point with coordinates (106, 105)S is the point with coordinates (104, 105.5)P and A are two other points on the grid such thatR is the midpoint of PQS is the midpoint of PAWork out the coordinates of the point A Distinguish between each of the following terms:3.1 Connection-oriented and Connectionless Network Applications (4)3.2 Dijkstra Routing Algorithm vs Flooding Routing (4)3.3 Centralized Routing vs Distributed Routing (4)3.4 RIP vs OSPF (4)3.5 Circuit switched network and Packet switched network A pure substance has a triple point at 80 kPa and -10 %. It also has a critical point at 150 kPa and 120 C. Determine if each statement below is true or false. If it's true, print "TRUE" on the line to the left of that statement. If it's false, print "FALSE" on the line to the left of that statement (2 points total, 0.4 point each) a) A normal fusion point exists. b) A normal sublimation point exists. c). A gas at 130 C and 130 kPa is cooled to -20 C. It will first liquefy and then solidify. d). A solid at - 50 % and 70 kPa is warmed to 20 C. It will liquefy. e) _A liquid at 70C and 100 kPa has its pressure decreased to 60 kPa, It will liquefy. Jayla spends 7 hours in school each day. Her lunch period is 30 minutes long, andshe spends a total of 42 minutes switching rooms between classes. The rest of Jayla'sday is spent in 6 classes that are all the same length. How long is each class? Consider these metal ion/metal standard reduction potentials Cu^2+ (aq)|Cu(s): +0.34 V; Ag (aq)|Ag(s): +0.80 V; Co^2+ (aq) | | Co(s): -0.28 V; Zn^2+ (aq)| Zn(s): -0.76 V. Based on the data above, which one of the species below is the best reducing agent? A)Ag(s)B) Cu+ (aq)C) Co(s) D)Cu(s) After standardising yourNaOH, you repeat the titrations now with your salad dressing, the final step! The end point of the titration will look like the middle solution in the image below. If you add too muchNaOHthe solution will turn purple/blue (right image). Concordant results are attained when three successive titration volumes that agree to better than0.1mLhave been achieved. Calculations The average titre ofNaOHfor your experiment was11.71mL. Your standardisation of theNaOHconcentration gave a [NaOH] of0.0147M. The first step in the calculations is to calculate the number of mol ofNaOHthat was delivered into the vinegar solutions using the formulan=cvNote: Don't enter units into your answer - numbers only. Enter three significant figures. You may use scientific notation only in the form, eg.5.68E2.Answer: What is the number of moles of acetic acid in the1.00mLof your dressing sample that you titrated theNaOHinto? Note: Don't enter units into your answer - numbers only. Enter three significant figures. You may use scientific notation only in the form, eg.5.68E2.Answer: Final calculation: Calculate the concentration (M) of acetic acid in your dressing. Note: Don't enter units into your answer - numbers only. Take care with significant figures. Answer: There are two types of firms, type A and type B, which make vape pens/e-cigs. There are 8 type A firms each with a cost function CA(y) = y +2y, and there are 20 type B firms each with a cost function CB (y) = y. The market demand for vape pens is given by D(p) = 37-p.9. What is the long-run equilibrium price and quantity?10. How much would an individual firm of each type produce in the long-run equilibrium?11. How many firms of each type do you expect to operate in the long-run? C++ Wordle Project If you are not familiar with Wordle, search for Wordle and play the game to get a feel for how it plays. Write a program that allows the user to play Wordle. The program should pick a random 5-letter word from the words.txt file and allow the user to make six guesses. If the user guesses the word correctly on the first try, let the user know they won. If they guess the correct position for one or more letters of the word, show them what letters and positions they guessed correctly. For example, if the word is "askew" and they guess "allow", the game responds with: a???w If on the second guess, the user guesses a letter correctly but the letter is out of place, show them this by putting the letter under their guess: a???w se This lets the user know they guessed the letters s and e correctly but their position is out of place. If the user doesn't guess the word after six guesses, let them know what the word is. Create a function to generate the random word as well as functions to check the word for correct letter guesses and for displaying the partial words as the user makes guesses. There is no correct number of functions but you should probably have at least three to four functions in your program. P. 2. Consider a 3-phase induction motor with per-phase equivalent circuit parameters of Ri 0.2 N, R2 = 0.14 N, X = X2 0.7 S2, X m = 12 12. The machine ratings are 400 V, 60 Hz, 6-poles, 1152 rpm, Y-connected. Calculate the following values. (a) slip 1200-1192 0.04 -100= 11% 1200 (b) starting torque (c) maximum torque (d) minimum speed (e) starting current (f) rated current (g) rated power factor (h) power factor at start A single flat circular loop of wire of radius a and resistance R is immersed in a strong uniform magnetic field. Further, the loop is positioned in a plane perpendicular to the magnetic field at all times. Assume the loop has no current flowing in it initially. Suppose the magnetic field can change, however it always remains uniform and perpendicular to the plane of the loop. Find the total charge that flows past any one point in the loop if the magnetic field changes from B ito B f. Hints: (1) use integration, (2) your result should not depend on how the magnetic field changes. If I have a case study question about a topic called Raid in cloud computing. How do I know what raid type should I choose for any given case study. Raid types include Raid0, Raid1, Raid10, Raid3, Raid5, Raid6 which of the follow2ing is the smallest volume;a)11cm3b)0.25dLc)1.4*10^3mLd)2.5*10^7nL