Blood tests can be used to confirm the diagnosis of acute glomerulonephritis because of the detection of antibodies and/or complement proteins in the blood.
Antibodies are immune proteins that form when the body is exposed to a foreign material, and complement proteins are part of the body's natural defenses that help fight against invading microorganisms. The presence of these proteins in the blood can indicate that the body is fighting an infection and that glomerulonephritis is the likely cause.
In addition, blood tests can also detect high levels of certain substances, such as blood urea nitrogen (BUN), creatinine, and potassium, which can indicate glomerulonephritis.
Elevated BUN levels can suggest impaired kidney function, while elevated creatinine and potassium levels can be indicative of glomerulonephritis. Finally, a blood test can also detect signs of infection, such as an elevated white blood cell count, which can point to glomerulonephritis.
In summary, blood tests can be used to confirm the diagnosis of acute glomerulonephritis because of the detection of antibodies and/or complement proteins in the blood, as well as elevated levels of BUN, creatinine, potassium, and white blood cells.
To learn more about blood, click here:
https://brainly.com/question/14781793
#SPJ11
the gel electrophoresis apparataus creates an electrical field with positive and negative poles at each end. were the dyes tested postively or negatively charged? how do you know?
The dyes used in gel electrophoresis are usually negatively charged because they move towards the positive electrode. The positively charged particles are attracted to the negative electrode. Hence, it can be inferred that the dyes tested were negatively charged in gel electrophoresis.
In the gel electrophoresis apparatus, the dyes are tested positively or negatively charged. It is known that the apparatus creates an electrical field with positive and negative poles at each end. The charged particles are separated based on the strength of the charge they possess.
The gel electrophoresis is a technique that helps in the separation of DNA or RNA molecules based on their size and charge. The samples are loaded into a well that is created in a gel and exposed to an electric field.
Here you can learn more about gel electrophoresis
https://brainly.com/question/30051368#
#SPJ11
The most superior bone of the vertebral column is the _________. A) coccyx B) vertebra prominens C) axis D) atlas
The most superior bone of the vertebral column is the atlas, which is denoted as the first cervical vertebra.
The occipital bone of the skull articulates with the atlas, which is situated at the top of the vertebral column and permits head nodding. It is a ring-shaped bone that has no body that helps the head move freely while supporting the weight of the skull.
The most noticeable vertebra in the cervical region is the vertebra prominens, commonly referred to as the seventh cervical vertebra. It is situated close to the base of the neck. The most inferior bone of the vertebral column, commonly referred to as the tailbone, is the coccyx, which is made up of four fused vertebrae.
To know more about vertebrae click here
brainly.com/question/18094930
#SPJ4
Complete a cross between a heterozygous horse and homozygous -dominant horse.
Were your results the same as the cross between a heterozygous horse and a
homozygous-recessive
horse?
Pleaseeeee help me
do human eggs only have an X chromosome
Answer:
Yes, human eggs (also known as ova or female gametes) only have an X chromosome. This is because human females have two X chromosomes in their cells, and during meiosis, when the egg is formed, one of the X chromosomes pairs up and separates, leaving only one X chromosome in the mature egg cell. In contrast, human sperm can have either an X or a Y chromosome, as males have one X and one Y chromosome in their cells.
I'LL GIVE 45 POINTS AND BRAINLIEST ! PLEASE ANSWER SOON !
Answer:
1. a sequence of DNA responsible for coding a protein = gene
2. the complete range of alleles an organism carries for a specific trait = genotype
3. an allele that determines the outward trait of a heterozygous organism = dominant
4. the observable characteristics of an organism = phenotype
Hope it helped! :)
Answer:
a sequence of DNA responsible for coding a protein = gene
The complex range of alleles an organism carries for... = genotype
an allele that determines... = dominant gene
the observable characteristics= phenotype
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>ExplainFirst one
genetic, the sequence of nucleotides in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) that determines the amino acid sequence of proteins
__________________________________________________________
Second one
The combination of alleles that an organism carries constitutes its genotype. If the paired alleles are the same, the organism's genotype is said to be homozygous for that trait; if they are different, the organism's genotype is heterozygous
__________________________________________________________
Thierd one
an allele that determines... = dominant gene
__________________________________________________________
Fourth one
The term "phenotype" refers to the observable physical properties of an organism; these include the organism's appearance, development, and behavior. An organism's phenotype is determined by its genotype, which is the set of genes the organism carries, as well as by environmental influences upon these genes
forensic scientists are considering doing dna tests on many pieces of evidence they currently have in their lab. what item would be least likely to produce suitable dna test results?
Answer:
Items that have been exposed to extreme heat or chemicals, such as burned materials or heavily bleached clothing, would be least likely to produce suitable DNA test results. Additionally, items that have been degraded over time or have been contaminated by other substances may also have limited DNA test results.
Answer:
a finger that was stored in formaldehyde
Explanation:
I took the final, good luck kiddos :)
the thermal death time for a suspension of bacillus subtilis endospores is 30 minutes in dry heat and less than 10 minutes in an autoclave. which type of heat is more effective? why?
The type of heat that is more effective is an autoclave. The reason behind this is the fact that Bacillus subtilis endospores, the suspension of which takes less than 10 minutes to get destroyed in an autoclave, is the most resistant type of bacterial endospore.
Bacterial endospores are among the most resistant forms of life on Earth, they have a remarkable ability to survive in adverse conditions such as extreme temperatures, radiation, and chemicals. The endospores of Bacillus subtilis have been found to be particularly resilient and can survive in a dormant state for years if not decades.This means that the dry heat may not be able to penetrate the endospore to kill it as compared to an autoclave. The higher the temperature, the more effective the destruction of bacteria is. Heat is an effective method for destroying bacteria, and it can be used in many different ways.
The reason behind this is the fact that an autoclave operates under high pressure, which allows it to achieve high temperatures that can penetrate through the endospores of Bacillus subtilis and destroy them more effectively. The dry heat, on the other hand, lacks the pressure required to achieve such temperatures, which is why it takes a longer time to kill the endospores.
Here you can learn more about Bacillus subtilis
https://brainly.com/question/17409725#
#SPJ4
explain why both mitosis and differentation are necessary processes for regenerating the leg of the salamander . be sure to reference the figures and provide details about parent cells daughter cells, DNA, and gene expression
The bones, muscles, nerves, and blood arteries in salamanders' limbs can regenerate entirely. Both mitosis and differentiation are necessary for salamander limb regeneration.
Why is it crucial that each daughter cell have the same data as the parent cell?Because the daughter cells will perform the same functional tasks as the parent cells, it is crucial that they share the same genetic makeup as the parent cells. Without the proper genetic make-up, the cell might not be able to live or even function properly.
What part does mitosis play in animal healing and regeneration?Mitosis produces brand-new cells that are genetically identical to one another. Mitosis aids in organism growth and repair.
To know more about bones visit:-
brainly.com/question/5482443
#SPJ1
Which body part on humans are pigs' hooves analogous to?
Put the steps of binary fission in order from first (1) to last (4).
DNA molecules attach to the cell membrane.
Two new, identical cells are produced.
DNA is copied.
The membrane elongates and pinches off.
PLEASE HELP!!!
Answer:
1. DNA is copied
2. DNA molecules attach to the cell membrane.
3. The membrane elongates and pinches off
4. Two new, identical cells are produced.
Explanation:
parent cell dna is copied.
replicated chromosomes attach to the cel membrane.
chromosomes are separated and pull in opposite directions.
the cell membrane pinches inward.
the cell divide.
two daughter cells form.
what could you infer if scientists discover that south america split from africa well before the evolution of the common ancestor of all modern primates?
This would mean that the common ancestor of all modern primates did not exist in South America at the time of the split and that the primates in South America evolved from a different lineage.
Evolution explained.If scientists discover that South America split from Africa well before the evolution of the common ancestor of all modern primates, it would suggest that the primates in South America evolved independently from those in Africa. This would mean that the common ancestor of all modern primates did not exist in South America at the time of the split and that the primates in South America evolved from a different lineage.
This finding could have important implications for our understanding of primate evolution and biogeography. It would suggest that primates have a more complex evolutionary history than previously thought, and that their distribution and diversification may have been influenced by a variety of factors, including continental drift, climate change, and ecological interactions.
Additionally, it could help to explain some of the unique characteristics of the primates in South America, such as the presence of the platyrrhine dental formula (2133) and the absence of a number of primate groups that are found in other parts of the world. It could also shed light on the processes that drove the evolution of primates in both South America and Africa, and how these processes may have influenced the diversification of primates more broadly.
Learn more about evolution below.
https://brainly.com/question/28420562
#SPJ1
if the offspring generation of problem 1 is crossed with the tall plant from a tall lineage, what will be the phenotype(s) and in what ratios for the offspring?
when a pure tall plant is crossed with a pure short plant, all of the resulting offspring are tall. When the offspring from that cross is self-fertilized, the phenotypic ratio is 3:1.
When the offspring generation of problem 1 is crossed with the tall plant from a tall lineage, the following phenotypes and ratios for the offspring are produced. The phenotypes are TT and Tt with a ratio of 1:1, respectively. Thus, the offspring generation will have a 1:1 ratio of TT to Tt.
Tallness is a dominant characteristic that appears to be inherited by simple Mendelian genetics. It is dominant over shortness and is designated by a capital T. On the other hand, shortness is a recessive trait that is designated by a lowercase t.
Here you can learn more about phenotypic ratio
https://brainly.com/question/11552649#
#SPJ11
Which industry would most likely not benefit from the applications of biotechnology?
Many industries can benefit from biotechnology, such as agriculture, medicine, energy, and environmental science.
Which industry would most likely not benefit from applications of biotechnology?Biotechnology involves the use of living organisms or their products to improve/ develop processes and products in various industries. Many industries can benefit from biotechnology like agriculture, medicine, energy, and environmental science.
One industry that may not benefit as much from biotechnology is the mining industry. The primary goal of the mining industry is to extract natural resources from earth, such as minerals, metals, and fossil fuels. Biotechnology may not have many direct applications in this industry, as the focus is more on geology, chemistry and engineering.
To know more about biotechnology, refer
https://brainly.com/question/1383490
#SPJ1
why must heat or a surface-active agent be used with application ofthe primary stain during acid-fast staining
Heat or a surface-active agent must be used with the application of the primary stain during acid-fast staining because the cell wall of acid-fast bacteria is impermeable to stains.
This means that the primary stain is unable to penetrate the cell wall of these bacteria without the aid of heat or a surface-active agent such as carbolfuchsin.
In other words, heat or a surface-active agent is used to help the primary stain penetrate the cell wall of acid-fast bacteria, allowing it to bind to the lipids in their cell walls. This makes the bacteria visible under a microscope and helps to differentiate them from non-acid-fast bacteria, which do not have such impermeable cell walls.
The process of acid-fast staining involves the use of heat or a surface-active agent with the primary stain to help it penetrate the cell wall of acid-fast bacteria. This is necessary because the cell wall of these bacteria is impermeable to stains, making it difficult to visualize them under a microscope. By using heat or a surface-active agent, the primary stain is able to bind to the lipids in the cell wall of these bacteria, making them visible under a microscope. This helps to differentiate them from non-acid-fast bacteria, which do not have such impermeable cell walls.
Here you can learn more about acid-fast staining
https://brainly.com/question/8852635#
#SPJ11
a platelet determination was performed on an automated instrument and a very low value was obtained. the platelets appeared adequate when estimated from the stained blood film. the best explanation for this discrepancy is:
An automated equipment was used to do a platelet determination, and a very low number was discovered. When calculated from the stained blood film, the platelets seemed sufficient. D2 mice offer the most plausible reason for this disparity.
RBC and PLT counts may be performed using an automated hematology analyzer, however when D2 mouse samples are being utilized, a suitable technique should be used. Red blood cell, mouse, platelet, automated hematology analyzer, and keywords.
When platelets are stimulated, they become spherical with a hypogranular cytoplasm and discharge tiny particles. This may lead to the erroneous identification of platelets when utilizing automated hematology analyzers owing to their distorted appearance. An EDTA sample has an automated platelet count of 58x10^3 uL. The blood smear's platelet estimation seems normal.
Learn more about platelet Visit: brainly.com/question/15171210
#SPJ4
What important events take place during prophrase 1
when comparing the large flightless birds (rheas, emus, and ostriches), what was the major question?
When comparing the large flightless birds (rheas, emus, and ostriches), the major question is the differences between them. All three of these birds are found in different parts of the world, with rheas being native to South America, emus to Australia, and ostriches to Africa. Furthermore, there are notable differences in their physical characteristics, most notably size.
Ostriches are the largest, weighing up to 300 pounds, while rheas and emus weigh much less. Additionally, the two types of rheas—greater and lesser—are further distinguished by the color of their wings. Lastly, the behaviors of these birds also vary. Ostriches can run up to 45 mph and use their powerful legs for defense, while rheas and emus cannot run as fast and use their strong feet and claws to ward off predators. All three species are omnivorous, though they have different diets.
Know more about Ostriches here:
https://brainly.com/question/21146290
#SPJ11
which type of protein coat will you find on the outside of a vesicle that is targeted to the er at the time that it buds off the golgi apparatus
The type of protein coat you will find on the outside of a vesicle that is targeted to the ER at the time that it buds off the Golgi apparatus is the COPII protein coat.
COPII protein coats are used in vesicular transport from the rough endoplasmic reticulum (ER) to the Golgi apparatus, where they coat vesicles that bud from the transitional endoplasmic reticulum (ER) and are transported to the cis-Golgi.
The endoplasmic reticulum (ER) is a cell organelle that plays a role in a variety of cellular activities. The endoplasmic reticulum is made up of two distinct regions, the rough endoplasmic reticulum, and the smooth endoplasmic reticulum. The rough endoplasmic reticulum is distinguished from the smooth endoplasmic reticulum by the presence of ribosomes on its surface.
The Golgi apparatus, also known as the Golgi complex, is another organelle in eukaryotic cells. The Golgi apparatus receives and processes proteins and lipids synthesized in the endoplasmic reticulum. It then sorts and distributes the processed molecules to their proper locations inside and outside the cell.
The COPII protein coat is found on the outside of a vesicle that is targeted to the ER at the time that it buds off the Golgi apparatus. COPII coats vesicles that bud from the transitional endoplasmic reticulum and are transported to the cis-Golgi.
To learn more about protein refer - https://brainly.com/question/14551192
#SPJ11
bilateral lesions of which brain structure would selectively disrupt circadian rhythms and thus sleep?
The suprachiasmatic nucleus (SCN) is the brain structure that is bilaterally damaged or injured, which selectively disrupts circadian rhythms and thus sleep.
What is a suprachiasmatic nucleus (SCN)?
The suprachiasmatic nucleus (SCN) is a small region of the brain that serves as the body's primary circadian pacemaker. It's a portion of the hypothalamus that is situated directly above the optic chiasm.
The suprachiasmatic nucleus (SCN) gets visual input from the retina via the retinohypothalamic pathway (RHT), which it employs to regulate circadian rhythms.
Circadian rhythm is a biological process that repeats approximately every 24 hours. It regulates physiological and behavioral cycles, such as the sleep-wake cycle. The circadian rhythm of an organism can be disrupted by a variety of factors, including genetic mutations, environmental influences, and illnesses such as Alzheimer's disease and Parkinson's disease.
Circadian rhythms are disrupted in patients with bilateral suprachiasmatic nucleus (SCN) damage. SCN damage is also linked to insomnia, excessive daytime sleepiness, and other sleep disorders. In addition, they may have difficulty adapting to shift work or jet lag. These symptoms can have a significant impact on a person's quality of life.
Learn more about suprachiasmatic nucleus (SCN) here:
https://brainly.com/question/31067021#
#SPJ11
in the example of interdomain communication between rhizobium species and leguminous plants, the advantage of the successful interaction for the plant is .
In the example of interdomain communication between Rhizobium species and leguminous plants, the advantage of the successful interaction for the plant is that it enables the plant to fix atmospheric nitrogen into ammonia.
The Rhizobium species have a symbiotic relationship with the leguminous plant roots, which allows the nitrogen-fixing bacteria to inhabit the plant's root nodules, forming the root nodule symbiosis. The legume plants provide the
Rhizobium species with carbon and energy sources in the form of sucrose and/or other organic compounds, while the bacteria help the plant to convert atmospheric nitrogen into ammonia. The ammonia produced is then converted to ammonium ions by the plant's own enzymes, which is used to synthesize amino acids and other compounds essential for the plant's growth and development.
The plant can also use the ammonia to make nitrogenous fertilizers, which can be stored in its leaves, stems, and roots for later use. Thus, the successful interaction between Rhizobium species and leguminous plants helps the plant to fix atmospheric nitrogen into ammonia, which is essential for its growth and development.
Here you can learn more about Rhizobium species
https://brainly.com/question/28300824#
#SPJ11
meristems can differentiate into each of the tissue systems of a plant. which phenomenon does this explain?
The phenomenon that meristems can differentiate into each of the tissue systems of a plant is called totipotency.
What are meristems?
The meristem is a region of a plant where growth occurs. It is a group of undifferentiated cells that are capable of division and differentiating into various plant organs. It is present in the roots and shoots of a plant. The meristem is critical to the plant's development, as it is responsible for creating new cells that will eventually form different organs in the plant.
Meristematic cells have the unique capacity to divide and differentiate into different cell types, and they also have the ability to regenerate a whole plant from a single cell under specific conditions.
The phenomenon that meristems can differentiate into each of the tissue systems of a plant is called totipotency. This means that the undifferentiated cells in the meristem have the potential to develop into any type of tissue found in the plant. Thus, meristems are totipotent.
Read more about the tissue :
https://brainly.com/question/25331705
#SPJ11
which areas of the cortex undergo substantial structural change in adolescence? (select all that apply)
Some of the areas that undergo substantial structural change during adolescence include:
Prefrontal cortexTemporal cortexParietal cortexFrontal cortexAdolescence is a period characterized by various changes that occur within the human body, including the brain. The brain undergoes various changes, including structural changes in different areas of the cortex.
The prefrontal cortex, for instance, is a critical part of the brain that matures throughout adolescence. During adolescence, the prefrontal cortex undergoes extensive structural changes that help the brain to become more efficient in handling complex cognitive tasks.
The temporal cortex is another critical part of the cortex that undergoes substantial structural changes during adolescence. This area is responsible for handling sound recognition, including speech and music. In adolescents, the temporal cortex undergoes extensive structural changes that help in improving language proficiency.
The parietal cortex is yet another area of the cortex that undergoes substantial structural changes in adolescence. This part of the cortex is responsible for spatial perception, including depth, and plays an essential role in visual and auditory processing.
Finally, the frontal cortex is another critical part of the cortex that undergoes substantial structural changes during adolescence. This area is responsible for controlling executive functions, such as attention, impulse control, decision-making, and emotional regulation.
-------------------------------------
Which areas of the cortex undergo substantial structural change in adolescence? (select all that apply)
Prefrontal cortexTemporal cortexParietal cortexFrontal cortexTo learn more about adolescence refer - https://brainly.com/question/30451097
#SPJ11
16. According to the passage set, which TWO events MOST likely led to the extinction of the dodo?
A. Over time, pigeons evolved into what is known as the dodo.
B. Dodos ate small stones to help with digestion.
New species introduced to the island began hunting the dodo.
D. The dodo laid single eggs in nests on the ground.
Answer: It's C.
Explanation: The dodo once lived on an uninhabited island where there were no predators, so they evolved and became flightless and slow.
Then one day, the Dutch came and brought dogs with them. The dodos were too slow. The eggs got stolen and eaten, dodos were killed, and the dodos didn't repopulate fast enough, so they went extinct.
what effect would applying slight pressure to the common carotid artery have on your heart rate and blood pressure?
Answer:
Pressure on this artery would cause a decrease in blood pressure however it would cause an increase in heart rate
The effect would have to apply slight pressure to the common carotid artery on your heart rate and blood pressure is vаsoconstricton of the renаl аrtery would decreаse both blood flow аnd blood pressure аt the kidney.
Pressure on the common carotid artery would decrease blood pressure at the baroreceptors in the carotid sinus. This decrease would cause a decreased frequency of action potentials along the glossopharyngeal cranial nerve (IX) to the medulla oblongata and more sympathetic impulses would be sent to the heart. The net result would be an increase in the heart rate.
In response, the kidney would increаse the аmount of renin it releаses, which in turn would leаd to аn increаse in the level of аngiotensin II. The аngiotensin II would bring аbout increаsed blood pressure аnd increаsed blood volume.
For more information about carotid artery refers to the link: https://brainly.com/question/30037173
#SPJ11
graded potentials develop in the cell body of neurons as well as in the sensory receptor. in order for sensory information to reach the central nervous system, the graded potential must be converted into an action potential. how (explain the steps) is the graded potential created in the cell body?
The steps on how graded potential is created in the cell body of a neuron are: Stimulus, Action potential, Graded potentials, Summation, Axon.
Graded potentials develop in the cell body of neurons as well as in the sensory receptor. To get the sensory information to the central nervous system, the graded potential should be converted into an action potential. The steps on how graded potential is created in the cell body of a neuron are:
1. Stimulus: A sensory receptor is activated by a stimulus. The stimulus can be heat, light, touch, or sound.
2. Action potential: The sensory receptor sends an action potential, which is an electrical signal, down the neuron.
3. Graded potentials: Graded potentials then develop in the cell body of the neuron. Graded potentials are small electrical signals that change the neuron's membrane potential.
4. Summation: The graded potentials' summation causes the membrane potential of the neuron to change enough to generate an action potential.
5. Axon: The action potential is sent down the axon to the synapse. The graded potential is generated due to the movement of positively charged ions, usually sodium, into the cell or negatively charged ions, like chloride, outside of the cell. The influx of ions into the cell causes depolarization of the cell, which leads to the development of a graded potential.
Hence, The steps on how graded potential is created in the cell body of a neuron are: Stimulus, Action potential, Graded potentials, Summation, Axon.
To know more about cell body of a neuron, refer here:
https://brainly.com/question/21803782#
#SPJ11
the dna from one source forms a double-stranded region with the dna from another source during what process?
Answer: Replication
Explanation:
The process is called DNA hybridization, and it occurs when two strands of DNA from different sources interact with each other. During this process, each strand of DNA bonds with a complementary strand from the other source, forming a double-stranded region. This interaction is enabled by the fact that DNA is a double helix, meaning that each strand can bind with another strand that has the same base sequence in reverse order.
The double-stranded region created during DNA hybridization is called a hybrid, and it is the basis for many of the genetic processes in living organisms. In addition, the double-stranded region created during DNA hybridization can be used to produce new genetic sequences through a process called recombination.
Know more about DNA hybridization here:
https://brainly.com/question/12098220
#SPJ11
the adaptations of archaebacteria to extreme modern-day environments suggest they were among the earliest organisms on the earth. explain this statement.
Archaebacteria is a group of bacteria that was found in extreme environments like hot springs, salt marshes, and volcanic vents.
It was discovered that these bacteria are capable of surviving in conditions that were toxic to other organisms.
The adaptations of archaebacteria to extreme modern-day environments suggest that they were among the earliest organisms on the earth. For example, they have developed a cell wall that is more robust than that of other bacteria.
This cell wall helps them to withstand the high temperatures and pressures that are present in volcanic vents and hot springs. They also have unique enzymes that can withstand the high temperatures that are found in these environments.
In addition, archaebacteria have developed a unique metabolism that allows them to utilize resources that are not available to other organisms. This metabolic process is known as chemosynthesis.
It involves using inorganic compounds like hydrogen sulfide, ammonia, and iron to produce energy. This process is essential for archaebacteria survival in environments where sunlight and organic matter are not available.
All of these adaptations suggest that archaebacteria were among the earliest organisms on the earth. They developed these adaptations when the earth was still a hostile place, and only a few organisms could survive in extreme conditions.
Thus, archaebacteria's adaptations to extreme modern-day environments suggest they were among the earliest organisms on the earth.
Here you can learn more about Archaebacteria
https://brainly.com/question/2598723#
#SPJ11
dna replication and gene expression in archaeans more closely resemble eukaryotic cells than the same processes in bacteria. however both bacteria and archaea are prokaryotic. what does this suggest
Answer:
The fact that DNA replication and gene expression in archaea more closely resemble eukaryotic cells than the same processes in bacteria, despite both archaea and bacteria being prokaryotic, suggests that there are significant differences between the two domains of prokaryotes in terms of their cellular machinery and molecular processes.
Although archaea and bacteria are both classified as prokaryotes because they lack a nucleus and other membrane-bound organelles, they differ in several key ways. For example, archaea have a distinct cell membrane composition that is more similar to that of eukaryotes than to bacteria. Additionally, archaea have a more complex transcriptional machinery, with RNA polymerases that more closely resemble those found in eukaryotes.
These differences in cellular machinery likely arose through evolutionary divergence, with archaea and eukaryotes sharing a common ancestor that was distinct from the ancestor of bacteria. Therefore, the similarities between archaea and eukaryotes in terms of DNA replication and gene expression suggest that these processes were already complex and well-developed in the common ancestor of archaea and eukaryotes, and were later lost or simplified in bacteria.
During crossing over, when the invading strand uses the invaded DNA as a _____, this automatically results in an extra copy of the invaded sequence at the expense of the invading sequence, thus explaining the departure from the expected _____ ratio.
The correct answer is: During crossing over, when the invading strand uses the invaded DNA as a template, this automatically results in an extra copy of the invaded sequence at the expense of the invading sequence, thus explaining the departure from the expected 1:1 ratio of crossing over.
Explanation:
DNA is replicated through the process of crossing over, which involves the exchange of genetic material between two homologous chromosomes. During the process, one of the homologous chromosomes acts as the invading sequence, while the other acts as the invaded DNA. When the invading strand uses the invaded DNA as a template, it results in an extra copy of the invaded sequence at the expense of the invading sequence, thus explaining the departure from the expected 1:1 ratio of crossing over.
What is crossing over?
Crossing over is a process during meiosis where the chromosome arms of maternal and paternal homologous chromosomes swap DNA sections (recombination) to produce new allelic combinations of traits. The crossing-over process starts with the breakage of two homologous chromosomes, the migration of the broken ends toward each other, and the formation of crosslinks by the formation of single crossovers.
These crosslinks are eventually converted to chiasmata that keep the chromosomal arms connected until metaphase I. During this process, one chromosome might lose genetic material while the other might acquire genetic material. This event results in unique combinations of genes that might not be present in either parent. The frequency of crossovers is affected by the distance between the gene and the centromere. Chromosomes that are nearer to the centromere are less likely to cross over than those that are further away. Explaining the departure from the expected Mendelian ratio.
The ratio of offspring created by a cross that exhibits the dominant and recessive traits that Mendel observed is referred to as the Mendelian ratio. Crossing over might result in new allelic combinations of genes that deviate from the Mendelian ratios. This is because the transmission of genes is no longer controlled by a single gene pair on a chromosome. Chromosome segregation is disturbed in one way or another by crossovers.
To know more about crossing-over process, visit:
https://brainly.com/question/11347292
#SPJ11
In which part of the male reproductive system do the sperm mature?
A. The vas deferens
B. The epididymis
C. The urethra
D. The seminiferous tubules
Answer:
The correct answer is B. The epididymis