When a sled with a mass of 6.3 kg experiences an acceleration of 18.0 m/s, the total force exerted on it is calculated to be 113.4 N using Newton's second law of motion.
According to Newton's second law of motion, the force F exerted on an object is equal to the product of its mass and acceleration. Mathematically, this can be represented as F = m * a, where F is the force, m is the mass, and a is the acceleration.
Given that the mass of the sled is 6.3 kg and the acceleration is 18.0 m/s, we can substitute these values into the equation. Multiplying the mass and acceleration together, we have F = 6.3 kg * 18.0 m/s.
Calculating the product, we find that F = 113.4 N. Therefore, the force exerted on the sled is 113.4 Newtons.
Learn more about acceleration here:
https://brainly.com/question/2303856
#SPJ11
When it hangs straight down,the pendulum is about 1. 27 x 105 m off the ground. What is the height of the building if the pendulum swings with a frequency of ⅙ hertz
The height of the building is approximately 1.26994 x 10^5 meters.
To determine the height of the building, we can use the formula for the period of a simple pendulum:
T = 2π√(L/g),
where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
In this case, the period T is the reciprocal of the frequency f:
T = 1/f.
Given that the frequency f is 1/6 Hz, we can calculate the period T:
T = 1/(1/6) = 6 seconds.
Next, we can rearrange the formula for the period to solve for the length L:
L = (T^2 * g) / (4π^2).
We can use the value of the acceleration due to gravity, g ≈ 9.8 m/s².
Substituting the known values:
L = (6^2 * 9.8) / (4π^2) ≈ 5.96 m.
Now, to find the height of the building, we subtract the length of the pendulum from the distance off the ground:
Height of the building = Distance off the ground - Length of the pendulum = 1.27 x 10^5 m - 5.96 m ≈ 1.26994 x 10^5 m.
Learn more about height here :-
https://brainly.com/question/21982748
#SPJ11
A car moving with a constant speed of 48 km/hr completes a circular track in 7.2 minutes. Calculate the magnitude of the acceleration of the car in the unit of m/s2.
The magnitude of the acceleration is found to be approximately 13.33m/s².
To calculate the magnitude of the acceleration of the car, we first need to convert the time taken to travel around the circular track into seconds. Given that the car completes the track in 7.2 minutes, we multiply this value by 60 to convert it to seconds. Thus, the time taken is 7.2 minutes * 60 seconds/minute = 432 seconds.
The formula for centripetal acceleration is given by a = v²/r, where "v" is the velocity of the car and "r" is the radius of the circular track. The velocity of the car can be converted from kilometers per hour (km/hr) to meters per second (m/s) by multiplying it by 1000/3600, since there are 1000 meters in a kilometer and 3600 seconds in an hour. Therefore, the velocity is 48 km/hr * 1000 m/km / 3600 s/h = 13.33 m/s.
Now we need to find the radius of the circular track. Since the car completes a full circle, the distance traveled is equal to the circumference of the track. The formula for circumference is given by C = 2πr, where "C" is the circumference and "r" is the radius.
Rearranging the formula, we have r = C/(2π). However, we are not given the value of the circumference, so we cannot calculate the exact radius.
Given the limited information, we can only calculate the magnitude of the acceleration in terms of the unknown radius. Therefore, the magnitude of the acceleration is a = (13.33 m/s)²/r.
Learn more about acceleration:
https://brainly.com/question/17123770
#SPJ11
A parallel plate capacitor has a capacitance of 7μF when filled with a dielectric. The area of each plate is 1.5 m² and the separation between the plates is 1×10⁻⁵ m. What is the dielectric constant of the dielectric? a. 2.1 b. 1.9 c. 6.7
d. 5.3
The dielectric constant is option c, 6.7.
To find the dielectric constant of the dielectric material in the parallel plate capacitor, we can use the formula for capacitance with a dielectric:
C = (ε₀ * εᵣ * A) / d,
where:
C is the capacitance,
ε₀ is the vacuum permittivity (8.854 × 10⁻¹² F/m),
εᵣ is the relative permittivity or dielectric constant,
A is the area of each plate, and
d is the separation between the plates.
We are given:
C = 7 μF = 7 × 10⁻⁶ F,
A = 1.5 m², and
d = 1 × 10⁻⁵ m.
Rearranging the formula, we have:
εᵣ = (C * d) / (ε₀ * A).
Substituting the given values, we can calculate the dielectric constant:
εᵣ = (7 × 10⁻⁶ F * 1 × 10⁻⁵ m) / (8.854 × 10⁻¹² F/m * 1.5 m²).
Calculating the above expression, we find:
εᵣ ≈ 6.66.
Therefore, the dielectric constant of the dielectric material is approximately 6.7.
Therefore, the correct option is c. 6.7.
learn more about dielectric constant;
https://brainly.com/question/28592099
#SPJ11
What is the length of the shortest pipe closed on one end and open at the other end that will have a fundamental frequency of 0.060 kHz on a day when the speed of sound is 340 m/s?
The length of the shortest pipe closed on one end and open at the other end that will have a fundamental frequency of 0.060 kHz on a day when the speed of sound is 340 m/s is approximately 283.3 cm.
This can be determined using the formula:
frequency = (n x speed of sound) / (2 x length)
where: n = 1 (fundamental frequency)
frequency = 0.060 kHz (60 Hz)
speed of sound = 340 m/s.
Plugging these values into the formula gives:
0.060 x 10³ Hz = (1 x 340 m/s) / (2 x length)
0.06 x 10³ Hz = 170 m/s / length
0.06 x 10³ Hz x length = 170 m/s
Dividing both sides by 0.06 x 10³ Hz:
length = 170 m/s / (0.06 x 10³ Hz)
length = 283.3 cm (rounded to one decimal place)
Therefore, the length of the shortest pipe closed on one end and open at the other end that will have a fundamental frequency of 0.060 kHz on a day when the speed of sound is 340 m/s is approximately 283.3 cm.
For more such questions on frequency visit:
https://brainly.com/question/254161
#SPJ8
1.The average geothermal gradient is about
degrees C/km.
2.A _texture is one in which layers occur that are produced by the preferred orientation of micas.
3. How deep would sedimentary rocks need to be buried to start becoming metamorphosed:
1.) The average geothermal gradient is about 25 degrees C/km.
2.) A schistose texture is one in which layers occur that are produced by the preferred orientation of micas.
3.) Sedimentary rocks would need to be buried at least 10 kilometers to start becoming metamorphosed.
1.) The average geothermal gradient is about 25 degrees C/km. Geothermal gradient refers to the rate of increase of temperature with depth in the Earth's interior. This rate varies depending on location, but the average rate is 25°C per kilometer of depth.
2.) A Schistose texture is one in which layers occur that are produced by the preferred orientation of micas. The schistose texture is the result of high pressure and temperature during metamorphism. During this process, micas (which are platy minerals) are forced to line up parallel to each other. This produces a layering or banding effect that is characteristic of schist.
3.) Sedimentary rocks would need to be buried at a depth of at least 10 kilometers to start becoming metamorphosed. This is because metamorphism requires high temperature and pressure, which are found at great depths in the Earth's interior. At this depth, the rocks would be subjected to high pressure from the overlying rocks and high temperature from the Earth's internal heat. This would cause them to undergo metamorphism and transform into a different type of rock. However, the exact depth required for metamorphism to occur depends on factors such as the composition of the rocks and the rate at which they are buried.
Learn more about geothermal gradient:
https://brainly.com/question/27975108
#SPJ11
Newton's theory of gravity consists of Select all that apply. the law of gravitational force the three laws of motion the law of conservation of angular momentum the principle of equivalence the principle of energy
Newton's theory of gravity consists of the law of gravitational force and the three laws of motion.
Newton's theory of gravity, formulated by Sir Isaac Newton in the 17th century, encompasses several key principles. One of the fundamental components of this theory is the law of gravitational force, which states that every particle in the universe attracts every other particle with a force that is directly proportional to their masses and inversely proportional to the square of the distance between them.
Additionally, Newton's theory of gravity includes the three laws of motion. The first law, known as the law of inertia, states that an object at rest will remain at rest, and an object in motion will continue to move at a constant velocity unless acted upon by an external force. The second law describes how the acceleration of an object is directly proportional to the net force acting upon it and inversely proportional to its mass. The third law states that for every action, there is an equal and opposite reaction.
However, the law of conservation of angular momentum, the principle of equivalence, and the principle of energy are not specific components of Newton's theory of gravity. The law of conservation of angular momentum pertains to the conservation of angular momentum in rotational systems. The principle of equivalence is a fundamental concept in Einstein's theory of general relativity, stating that the effects of gravity are indistinguishable from the effects of acceleration. The principle of energy, though a fundamental concept in physics, is not exclusively associated with Newton's theory of gravity but applies to various aspects of the physical world.
Learn more about Newton's theory of gravity:
https://brainly.com/question/31922197
#SPJ11
An adiabatic process is one in which i. no heat enters or leaves the system. ii. only mass is allowed crossing the boundary. iii. the temperature of the system changes. iv. the change in internal energy is equal to the mechanical workdone. O a. ii, iii and iv O b. i, ii, iii and iv O c. i, iii and iv O d. i, ii and iii
An adiabatic process is one in which no heat enters or leaves the system, and the change in internal energy is equal to the mechanical work done. Therefore, the correct answer is option c. I, iii, and iv.
An adiabatic process is characterized by the absence of heat transfer between the system and its surroundings. In other words, no heat enters or leaves the system during an adiabatic process
(i). However, this does not imply that only mass is allowed to cross the system boundary
(ii). Adiabatic processes can occur in both open and closed systems. Additionally, during an adiabatic process, the temperature of the system can change
(iii). This change in temperature is a result of the work done on or by the system. The change in internal energy is equal to the mechanical work done (iv) because there is no heat transfer to account for. Thus, the correct answer is option c. I, iii, and iv.
To know more about the adiabatic process click here:
https://brainly.com/question/29209594
#SPJ11
The environmental lapse rate is 8C/km and the initial
temperature at the surface is
25C. What is the atmospheric stability of the layer from the
surface to 1km?
The atmospheric stability of the layer from the surface to 1 km is stable. it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air
Atmospheric stability is the property of the atmosphere where it opposes the vertical motion of air in response to disturbances.
Based on the given data, the initial temperature at the surface is 25°C and the environmental lapse rate is 8°C/km.
The atmospheric stability of the layer from the surface to 1 km can be calculated by comparing the dry adiabatic lapse rate (DALR) with the environmental lapse rate (ELR). The dry adiabatic lapse rate (DALR) is 10°C/km, which is the rate at which the unsaturated parcel of air rises or sinks as a result of the adiabatic process.
The atmospheric stability can be classified into three categories based on comparing the environmental lapse rate (ELR) and the dry adiabatic lapse rate (DALR). They are as follows:
Unstable Atmosphere (ELR > DALR)
Conditionally Unstable Atmosphere (ELR = DALR)
Stable Atmosphere (ELR < DALR)
The given environmental lapse rate is 8°C/km which is less than the dry adiabatic lapse rate of 10°C/km. So, the atmosphere is stable in this layer from the surface to 1 km.
However, we need to verify whether it is absolutely stable or conditionally stable by looking at the saturated adiabatic lapse rate (SALR) that governs the behaviour of air parcels that are saturated. The saturated adiabatic lapse rate (SALR) is lower than the DALR, indicating that a saturated air parcel cools more slowly than an unsaturated air parcel when it rises or sinks adiabatically.
The layer would be conditionally unstable if the environmental lapse rate (ELR) was lower than the saturated adiabatic lapse rate (SALR) but greater than the dry adiabatic lapse rate (DALR). Since we do not know the moisture content in the atmosphere, we cannot compute SALR. Hence, the atmosphere in this layer is stable with an ELR of 8°C/km and a DALR of 10°C/km. Therefore, it is stable and the atmosphere has a strong tendency to resist upward vertical movement of air.
Learn more about atmospheric stability:
https://brainly.com/question/31830207
#SPJ11
An object is placed 60 em from a converging ('convex') lens with a focal length of magnitude 10 cm. What is is the magnification? A) -0.10 B) 0.10 C) 0.15 D) 0.20 E) -0.20
An object is placed 60 em from a converging ('convex') lens with a focal length of magnitude 10 cm. The magnification is -0.20.So option E is correct.
To find the magnification of an object placed in front of a converging lens, we can use the lens formula:
1/f = 1/do - 1/di
where f is the focal length of the lens, do is the object distance (distance of the object from the lens), and di is the image distance (distance of the image from the lens).
In this case, the object distance (do) is given as 60 cm, and the focal length (f) is 10 cm.
Substituting the given values into the lens formula:
1/10 = 1/60 - 1/di
Simplifying the equation:
1/10 = (60 - di)/ (60 × di)
Cross-multiplying:
di = (60 × di) / 10 - (60 ×di) / 60
di = 6di - di
di = 5di
di = do/5
The magnification (m) is given by:
m = -di / do
Substituting the values:
m = -(do/5) / do
m = -1/5
Therefore, the magnification is -0.20. Therefore option E is correct.
To learn more about magnification visit: https://brainly.com/question/131206
#SPJ11
If a runners power is 400 W as runs, how much chemical energy does she convert into other forms in 10.0 minutes?
Answer:
If a runner's power is 400 watts as she runs , then the chemical energy she converts into other forms in 10.0 minutes would be 240,000 Joules . This information may be found in several of the search results provided, including result numbers 1, 2, 4, 5, 6, 8, and 9.
Explanation:
current of 10.0 A, determine the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them. Tries 4/10 Previous Tries
Therefore, the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them is 5.42 × 10⁻⁵ T.
Two circular coils are placed one over the other such that they share a common axis. The radius of the top coil is 0.120 m and it carries a current of 2.00 A. The radius of the bottom coil is 0.220 m and it carries a current of 10.0 A.
Determine the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them.Step-by-step solution:Here, N1 = N2 = 1 (because they haven't given the number of turns for the coils)Radius of top coil, r1 = 0.120 m, current in the top coil, I1 = 2.00 ARadius of bottom coil, r2 = 0.220 m, current in the bottom coil, I2 = 10.0 AWe have to determine the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them,
such that,B = μ0(I1 / 2r1 + I2 / 2r2)Putting the given values in the above equation, we get,B = 4π × 10⁻⁷ (2 / 2 × 0.120 + 10 / 2 × 0.220)B = 4π × 10⁻⁷ (1 / 0.12 + 5 / 0.22)B = 5.42 × 10⁻⁵ TTherefore, the magnitude of the magnetic field at a point on the common axis of the coils and halfway between them is 5.42 × 10⁻⁵ T.
to know more about magnetic
https://brainly.com/question/30563158
#SPJ11
A 1C charge is originally a distance of 1m from a 0.2C charge, but is moved to a distance of 0.1 m. What is the change in electric potential energy? OJ -9.0x10^9 J 1.6x10^10 J 9.0x10^9 J
Therefore, the change in electric potential energy is $1.62 \times 10^{10} J$, which is approximately $1.6 \times 10^{10} J$.Hence, the correct option is $1.6 \times 10^{10} J$.
Electric potential energy is calculated using the formula :$E_{p}=k \frac{q_{1} q_{2}}{r}$where,$k$ is Coulomb's constant, $9 \times 10^9 Nm^2/C^2$$q_1$ is the magnitude of charge 1$q_2$ is the magnitude of charge 2$r$ is the distance between the chargesFrom the above formula,$E_{p} \propto \frac{1}{r}$ which implies that when the distance between the two charges decreases, the electric potential energy will increase.
The change in electric potential energy, $\Delta E_{p}$ can be calculated using the formula,$\Delta E_{p} = E_{p final} - E_{p initial}$Given,$q_{1} = 1C$$q_{2} = 0.2C$$r_{initial} = 1m$$r_{final} = 0.1m$Let's find the initial electric potential energy:$E_{p initial} = k \frac{q_{1} q_{2}}{r_{initial}}$$E_{p initial} = 9 \times 10^9 \frac{(1)(0.2)}{1}$$E_{p initial} = 1.8 \times 10^9 J$Now,
let's find the final electric potential energy:$E_{p final} = k \frac{q_{1} q_{2}}{r_{final}}$$E_{p final} = 9 \times 10^9 \frac{(1)(0.2)}{0.1}$$E_{p final} = 1.8 \times 10^{10} J$The change in electric potential energy is $\Delta E_{p} = E_{p final} - E_{p initial}$$\Delta E_{p} = (1.8 \times 10^{10}) - (1.8 \times 10^9)$$\Delta E_{p} = 1.62 \times 10^{10} J$
Therefore, the change in electric potential energy is $1.62 \times 10^{10} J$, which is approximately $1.6 \times 10^{10} J$.Hence, the correct option is $1.6 \times 10^{10} J$.
to know more about potential
https://brainly.com/question/16705765
#SPJ11
A 9500 kg spacecraft leaves the surface of the Earth for a mission in deep space. What is the change in the gravitational potential energy of the Earth+spacecraft system between when it was at the surface and when it reaches a location that is 5 times the radius of the Earth away from the Earth's center? If needed, use 6 x 10²⁴ kg as the mass of the Earth, 6.4 x 10⁶ m as the radius of the Earth, and 6.7×10⁻¹¹ N-m²/kg² as the universal gravitational constant.
The change in gravitational potential energy is - 3.31 x 10¹⁹ J.
Mass of the Earth, m = 6 x 10²⁴ kg
Radius of the Earth, r = 6.4 x 10⁶ m
Universal gravitational constant, G = 6.7×10⁻¹¹ N-m²/kg²
Mass of spacecraft, m = 9500 kg
At the surface of the Earth, the gravitational potential energy of the Earth+spacecraft system is given by;
U₁ = - GMm/R
Here,
M = mass of the Earth = 6 x 10²⁴ kg
m = mass of the spacecraft = 9500 kg
R = radius of the Earth = 6.4 x 10⁶ m
G = Universal gravitational constant = 6.7×10⁻¹¹ N-m²/kg²
U₁ = - (6.7×10⁻¹¹) x (6 x 10²⁴) x (9500) / (6.4 x 10⁶)
U₁ = - 8.407 x 10¹⁰ J
At a distance of 5 times the radius of the Earth from the Earth's center, the gravitational potential energy of the Earth+spacecraft system is given by;
U₂ = - GMm/2r
Here,
r = 5 x r = 5 x 6.4 x 10⁶ = 32 x 10⁶ m
U₂ = - (6.7×10⁻¹¹) x (6 x 10²⁴) x (9500) / (2 x 32 x 10⁶)
U₂ = - 1.171 x 10¹⁰ J
The change in gravitational potential energy of the Earth+spacecraft system between when it was at the surface and when it reaches a location that is 5 times the radius of the Earth away from the Earth's center is;
ΔU = U₂ - U₁
ΔU = - 1.171 x 10¹⁰ - (- 8.407 x 10¹⁰)
ΔU = - 3.31 x 10¹⁹ J
Therefore, the change in gravitational potential energy of the Earth+spacecraft system between when it was at the surface and when it reaches a location that is 5 times the radius of the Earth away from the Earth's center is - 3.31 x 10¹⁹ J.
Learn more about gravitational potential energy:
https://brainly.com/question/15896499
#SPJ11
Two masses are attached to each other by a cable around a pulley. The mass on the left, which sits on an incline making an angle of 25 degrees with the horizontal, weighs 35.0 N; the mass kn the right, which is suspended from the cable, weighs 20N. Assume friction is negligible.
a) Make a complete free body diagram for each mass. b) Calculate the acceleration of the masses. c) Find the tension in the cable.
a) The free body diagram for the mass on the left includes the weight acting downwards and the normal force acting perpendicular to the incline. The free body diagram for the mass on the right includes the tension force acting upwards and the weight acting downwards.
b) The acceleration of the masses can be calculated using Newton's second law. The net force on each mass is equal to its mass multiplied by its acceleration.
c) The tension in the cable can be determined by considering the forces acting on the mass on the right.
a) For the mass on the left, the free body diagram includes the weight (acting vertically downwards with a magnitude of 35.0 N) and the normal force (acting perpendicular to the incline). Since the incline makes an angle of 25 degrees with the horizontal, the weight can be resolved into components parallel and perpendicular to the incline. The component parallel to the incline is 35.0 N * sin(25°), and the component perpendicular to the incline is 35.0 N * cos(25°).
For the mass on the right, the free body diagram includes the tension force (acting upwards) and the weight (acting downwards with a magnitude of 20 N). Since there is no acceleration in the vertical direction, the tension force must be equal to the weight of the right mass, which is 20 N.
b) To calculate the acceleration of the masses, we can use Newton's second law, which states that the net force on an object is equal to its mass multiplied by its acceleration. For the mass on the left, the net force acting in the direction of the incline is the component of the weight parallel to the incline, which is 35.0 N * sin(25°). For the mass on the right, the net force acting in the downward direction is the weight, which is 20 N. Since the masses are connected by a cable, they have the same acceleration. Setting up the equations:
Net force on the left mass = (35.0 N * sin(25°)) - (20 N) = (mass of left mass) * (acceleration)
Net force on the right mass = (20 N) - (mass of right mass) * (acceleration)
Solving these equations simultaneously will give the value of the acceleration.
c) To find the tension in the cable, we can consider the forces acting on the mass on the right. There are two forces: the tension force pulling upwards and the weight pulling downwards. Since there is no acceleration in the vertical direction, these two forces must be equal in magnitude. Therefore, the tension in the cable is equal to the weight of the right mass, which is 20 N.
Learn more about mass here:
https://brainly.com/question/30337818
#SPJ11
A tunnel diode can be connected to a microwave circulator to make a negative resistance amplifier. Support this statement with your explanations and a sketch
A tunnel diode can indeed be connected to a microwave circulator to create a negative resistance amplifier. This configuration takes advantage of the unique characteristics of a tunnel diode to amplify microwave signals effectively. The negative resistance property of the tunnel diode compensates for the losses in the circulator, resulting in overall signal amplification.
A tunnel diode is a semiconductor device that exhibits a negative resistance region in its current-voltage (I-V) characteristic curve. This negative resistance region allows the diode to amplify signals. When connected to a microwave circulator, which is a three-port device that directs microwave signals in a specific direction, the negative resistance property of the tunnel diode can compensate for the inherent losses in the circulator.
In the configuration, the microwave signal is input to one port of the circulator, and the tunnel diode is connected to another port. The negative resistance of the diode counteracts the losses in the circulator, resulting in signal amplification. The amplified signal can then be extracted from the third port of the circulator.
The combination of the tunnel diode and microwave circulator creates a stable and efficient negative resistance amplifier, suitable for microwave applications. This setup is commonly used in microwave communication systems, radar systems, and other high-frequency applications.
Learn more about resistance here:
https://brainly.com/question/29427458
#SPJ11
Describe how the scientific approach is different than other
ways of understanding.
Mathematical quantitative formulas to get answers.
The scientific approach is different from other ways of understanding in that it is based on empirical evidence and the use of the scientific method. Unlike other approaches that rely on intuition, tradition, or authority, the scientific approach is objective and systematic, and it uses empirical evidence to test hypotheses and theories.
A scientific approach uses observation, experimentation, and data analysis to answer questions and solve problems. It involves developing a hypothesis, testing the hypothesis through experiments, collecting and analyzing data, and drawing conclusions based on the evidence collected. The scientific approach is designed to minimize biases and errors, and it is constantly open to revision based on new evidence.
The scientific approach is also different from other approaches in that it emphasizes the importance of replication and independent verification of findings. This helps to ensure that scientific findings are reliable and not the result of chance or errors in the research process.
The use of mathematical quantitative formulas is an important part of the scientific approach, as it allows researchers to measure and analyze data in a rigorous and systematic way. Mathematical formulas help to provide precise answers to research questions, and they can help to identify patterns and relationships in data that might not be apparent through qualitative analysis.
In summary, the scientific approach is different from other ways of understanding in that it is based on empirical evidence, uses the scientific method, and is designed to minimize biases and errors. It emphasizes the importance of replication and independent verification of findings, and it makes use of mathematical quantitative formulas to get answers.
Learn more about hypotheses at: https://brainly.com/question/606806
#SPJ11
A scuba tank, when fully submerged, displaces 14.1 L of seawater. The tank itself has a mass of 13.5 kg and, when "full," contains 1.25 kg of air. Assuming only a weight and buoyant force act, determine the net force (magnitude) on the fully submerged tank at the beginning of a dive (when it is full of air). Express your answer with the appropriate units. X Incorrect; Try Again; 2 attempts remaining Express your answer with the appropriate units.
The net force on the tank is 10.13 Newtons (N). So, the coorect anser is 10.13 N.
To determine the net force, we need to consider the weight of the tank and the buoyant force acting on it.
1. Weight of the tank:
Weight = mass * acceleration due to gravity
Weight = 13.5 kg * 9.8 m/s^2
The weight of the tank is approximately 132.3 N.
2. Buoyant force:
Buoyant force = density of fluid * volume displaced * acceleration due to gravity
First, let's convert the volume of seawater displaced by the tank to cubic meters:
Volume = 14.1 L * 0.001 m^3/L
The volume is approximately 0.0141 m^3.
Now, let's calculate the buoyant force using the density of seawater, which is approximately 1025 kg/m^3:
Buoyant force = 1025 kg/m^3 * 0.0141 m^3 * 9.8 m/s^2
The buoyant force is approximately 142.43 N.
3. Net force:
Net force = Buoyant force - Weight
Net force = 142.43 N - 132.3 N
The net force on the fully submerged scuba tank at the beginning of a dive is approximately 10.13 N.
Therefore, the net force on the tank is 10.13 Newtons (N).
Learn more about buoyant force
https://brainly.com/question/21990136
#SPJ11
A 1.40-cm-tall object is placed along the principal axis of a thin convex lens of 13.0 cm focal length. If the object distance is 19.2 cm, which of the following best describes the image distance and height, respectively? a. 7.75 cm and 4.34 cm b. 40.3 cm and 2.94 cm c. 7.75 cm and 7.27 cm d. 9.16 cm and 4.34 cm e. 41.4 cm and 0.668 cm
The best description for the image distance and height, respectively, is: Image distance: Approximately 7.75 cm; Image height: Approximately 0.561 cm. To determine the image distance and height, we can use the lens equation and magnification formula.
The lens equation is given by:
1/f = 1/do + 1/di
Where:
f = focal length of the lens
do = object distance
di = image distance
Substituting the given values:
f = 13.0 cm
do = 19.2 cm
1/13.0 = 1/19.2 + 1/di
To find the image distance, we rearrange the equation:
1/di = 1/13.0 - 1/19.2
di = 1 / (1/13.0 - 1/19.2)
di ≈ 7.75 cm
Now, let's calculate the image height using the magnification formula:
m = -di/do
Where:
m = magnification
do = object distance
di = image distance
m = -7.75 cm / 19.2 cm
m ≈ -0.4036
The negative sign indicates that the image is inverted.
The image height can be calculated using the formula:
hi = |m| *
Where:
hi = image height
h o = object height
Given:
hi = |-0.4036| * 1.40 cm
hi ≈ 0.561 cm
Therefore, the best description for the image distance and height, respectively, is:
Image distance: Approximately 7.75 cm
Image height: Approximately 0.561 cm
The closest option to these values is option e. 41.4 cm and 0.668 cm, although the calculated values do not exactly match this option.
To know more about magnification formula
brainly.com/question/30402564
#SPJ11
Suppose you have a 9.45 V battery, a 2.50μF capacitor, and a 7.35μF capacitor. (a) Find the charge (in C) and energy (in J) stored if the capacitors are connected to the battery in series. charge energy
C
J
(b) Do the same for a parallel connection. charge C energy ] Additional Materials /1 Points]
To determine the charge and energy stored in capacitors connected in series and in parallel to a battery, calculations using the given values of the battery voltage and capacitances need to be performed.
(a) When the capacitors are connected in series to the battery, the total capacitance (C_series) is given by the reciprocal of the sum of the reciprocals of the individual capacitances (C1 and C2):1/C_series = 1/C1 + 1/C2.Using this total capacitance, the charge (Q_series) stored in the series combination can be calculated using the formula Q_series = C_series * V, where V is the battery voltage. The energy (E_series) stored in the capacitors can be determined using the formula E_series = (1/2) * C_series * V^2.
(b) When the capacitors are connected in parallel to the battery, the total capacitance (C_parallel) is the sum of the individual capacitances (C1 and C2): C_parallel = C1 + C2. The charge (Q_parallel) stored in the parallel combination is calculated using the formula Q_parallel = C_parallel * V, and the energy (E_parallel) stored is given by E_parallel = (1/2) * C_parallel * V^2.By substituting the given values into the respective formulas, the charge and energy stored in the capacitors can be determined for both the series and parallel connections.
Learn more about capacitors here:
https://brainly.com/question/31627158
#SPJ11
If the exposure rate constant is 0. 87 Rcm2/mCi-hr and the average patient transmission factor is 0. 2, the exposure rate mR/hr. At 12. 5 cm for a patient who has been injected with 20 mCi of Tc-99m is 22 21 20 19
Answer:
To find the exposure rate (in mR/hr) at a distance of 12.5 cm, we can use the following equation:
Exposure Rate (mR/hr) = Exposure Rate Constant (Rcm²/mCi-hr) × Activity (mCi) × Transmission Factor / Distance² (cm²)
Plugging in the given values:
Exposure Rate (mR/hr) = 0.87 Rcm²/mCi-hr × 20 mCi × 0.2 / (12.5 cm)²
Exposure Rate (mR/hr) = 17.4 Rcm²/hr × 0.2 / 156.25 cm²
Exposure Rate (mR/hr) = 3.48 Rcm²/hr / 156.25 cm²
Exposure Rate (mR/hr) ≈ 0.0223 R/hr
Since 1 R (Roentgen) is equal to 1000 mR (milliroentgen), we can convert the exposure rate to mR/hr:
Exposure Rate (mR/hr) ≈ 0.0223 R/hr × 1000 mR/R
Exposure Rate (mR/hr) ≈ 22.3 mR/hr
The closest answer choice is:
A) 22
Two charges 91 and 42 are placed on the x-axis. Charge 41=3.5 nC is at x=2.5 m and charge 92=-1.5 nC is at x=-2.0m. What is the electric potential at the origin? Use k=9.0x10 N·m2/C2 and 1 nC = 10°C. 0 -5.9V 5.9 V -19 V O 19v
The electric potential at the origin is approximately -5.9 V. So, the correct answer is -5.9 V.
To calculate the electric potential at the origin, we need to consider the contributions from both charges. The electric potential at a point due to a single point charge is given by the formula:
V = k * q / r
Where V is the electric potential, k is the electrostatic constant (9.0 x 10^9 N·m^2/C^2), q is the charge, and r is the distance from the charge to the point of interest.
Let's calculate the electric potential due to each charge separately:
For charge q1 = 3.5 nC at x = 2.5 m:
r1 = distance from q1 to the origin = 2.5 m
V1 = k * q1 / r1 = (9.0 x 10^9 N·m^2/C^2) * (3.5 x 10^-9 C) / (2.5 m)
For charge q2 = -1.5 nC at x = -2.0 m:
r2 = distance from q2 to the origin = 2.0 m
V2 = k * q2 / r2 = (9.0 x 10^9 N·m^2/C^2) * (-1.5 x 10^-9 C) / (2.0 m)
Now, we can calculate the total electric potential at the origin by adding the contributions from both charges:
V_total = V1 + V2
Substituting the values:
V_total = [(9.0 x 10^9 N·m^2/C^2) * (3.5 x 10^-9 C) / (2.5 m)] + [(9.0 x 10^9 N·m^2/C^2) * (-1.5 x 10^-9 C) / (2.0 m)]
Evaluating this expression, we find:
V_total ≈ -5.9 V
Therefore, the electric potential at the origin is approximately -5.9 V.
Learn more about electric potential
https://brainly.com/question/2844445
#SPJ11
Electric Field a the Mid-Point of Two Charges The electric Field midway between two equal but opposite point charges is 1920 N/C, and the distance between the charges is 11.4 cm. What is the magnitude of the charge on each?
Given:
Electric field midway between two equal but opposite point charges is 1920 N/C. Distance between the charges is 11.4 cm.
Let q be the magnitude of the charge on each point charge.
Using Coulomb's law, the electric field E due to a point charge q at a distance r from it is given by;
E = kq/r
where k = 9 × 10^9 Nm²/C² is Coulomb's constant.
It follows that the electric field E at the midpoint between the two charges is given by;
E = (1/4πε₀) [2q/(11.4/2)²] = 1920 N/C
Where ε₀ is the permittivity of free space.
Evaluating for q;
q = E(11.4/2)²(4πε₀)/2
= 7.7 × 10^-6C (rounded off to 2 significant figures)
Therefore, the magnitude of the charge on each point charge is 7.7 × 10^-6 C.
What is an electric field?
An electric field is defined as a field of force surrounding an electrically charged particle that exerts a force on another charged particle that comes within its field of influence.
Learn more about permittivity of free space here
https://brainly.com/question/30403318
#SPJ11
A hydrogen atom is in its ground state (nᵢ = 1) when a photon impinges upon it. The atom absorbs the photon, which has precisely the energy required to raise the atom to the nf = 3 state. (a) What was the photon's energy (in eV)? _________eV (b) Later, the atom returns to the ground state, emitting one or more photons in the process. Which of the following energies describes photons that might be emitted thus? (Select all that apply.) O 1.89 ev O 12.1 eV O 10.2 ev O 13.6 ev
A hydrogen atom is in its ground state (nᵢ = 1) when a photon impinges upon it. The atom absorbs the photon, which has precisely the energy required to raise the atom to the nf = 3 state. (a) The photon's energy that was absorbed is approximately 1.51 eV (negative sign indicates absorption).(b)option B and C are correct.
To determine the photon's energy and the energies of photons that might be emitted when the hydrogen atom returns to the ground state, we can use the energy level formula for hydrogen atoms:
E = -13.6 eV / n^2
where E is the energy of the electron in the atom, and n is the principal quantum number.
(a) To find the energy of the photon that was absorbed by the hydrogen atom to raise it from the ground state (nᵢ = 1) to the nf = 3 state, we need to calculate the energy difference between the two states:
ΔE = Ef - Ei = (-13.6 eV / 3^2) - (-13.6 eV / 1^2)
Calculating the value of ΔE:
ΔE = -13.6 eV / 9 + 13.6 eV
= -1.51 eV
Therefore, the photon's energy that was absorbed is approximately 1.51 eV (negative sign indicates absorption).
(b) When the hydrogen atom returns to the ground state, it can emit photons with energies corresponding to the energy differences between the excited states and the ground state. We need to calculate these energy differences and check which values are present among the given options.
ΔE1 = (-13.6 eV / 1^2) - (-13.6 eV / 3^2) = 10.20 eV
ΔE2 = (-13.6 eV / 1^2) - (-13.6 eV / 4^2) = 10.20 eV
ΔE3 = (-13.6 eV / 1^2) - (-13.6 eV / 5^2) = 12.10 eV
ΔE4 = (-13.6 eV / 1^2) - (-13.6 eV / 6^2) = 12.10 eV
ΔE5 = (-13.6 eV / 1^2) - (-13.6 eV / 7^2) = 13.55 eV
ΔE6 = (-13.6 eV / 1^2) - (-13.6 eV / 8^2) = 13.55 eV
ΔE7 = (-13.6 eV / 1^2) - (-13.6 eV / 9^2) = 13.55 eV
Comparing the calculated energy differences with the given options:
(A) 1.89 eV: This energy difference does not match any of the calculated values.
(B) 12.1 eV: This energy difference matches ΔE3 and ΔE4.
(C) 10.2 eV: This energy difference matches ΔE1 and ΔE2.
(D) 13.6 eV: This energy difference does not match any of the calculated values.
Therefore option B and C are correct.
To learn more about principal quantum number visit: https://brainly.com/question/2292596
#SPJ11
A 0.2 kg ball of negligible size is attached to the free end of a simple pendulum of length 0.8 m. The pendulum is deflected to a horizontal position and then released without pushing. (Let g = = 10 Ignore the effects of air resistance. In the time instant in question, when the pendulum is vertical, the motion can be considered uniform circular motion.) a) What is the speed of the ball in the vertical position of the pendulum? b) Determine the centripetal acceleration of the ball in the vertical position of the pendulum!
Answers:
a) The speed of the ball in the vertical position of the pendulum is approximately 12.65 m/s.
b) The centripetal acceleration of the ball in the vertical position of the pendulum is approximately 199.06 m/s².
a) To find the speed of the ball in the vertical position of the pendulum, we can use the concept of conservation of energy. At the highest point of the pendulum swing, all the potential energy is converted into kinetic energy.
The potential energy at the highest point is given by the formula:
PE = m * g * h
where:
m is the mass of the ball (0.2 kg),
g is the acceleration due to gravity (10 m/s²), and
h is the height from the lowest point to the highest point (equal to the length of the pendulum, 0.8 m).
Substituting the values into the formula, we have:
PE = 0.2 kg * 10 m/s² * 0.8 m
The potential energy is equal to the kinetic energy at the highest point:
PE = KE
0.2 kg * 10 m/s² * 0.8 m = 0.5 * m * v²
Simplifying the equation, we find:
16 = 0.1 * v²
Dividing both sides by 0.1, we get:
v² = 160
Taking the square root of both sides, we find:
v ≈ 12.65 m/s
b) The centripetal acceleration of the ball in the vertical position of the pendulum is the acceleration directed towards the center of the circular path. It can be calculated using the formula:
a = v² / r
where:
v is the speed of the ball (12.65 m/s),
r is the radius of the circular path (equal to the length of the pendulum, 0.8 m).
Substituting the values into the formula, we have:
a = (12.65 m/s)² / 0.8 m
Calculating the value, we find:
a ≈ 199.06 m/s²
To know more about centripetal acceleration
https://brainly.com/question/17123770
#SPJ11
Consider a periodic signal 0 ≤ t ≤ 1 x(t) = { ¹ ₂ 1 < t < 2 With period T = 2. The derivative of this signal is related to the impulse train q(t) = Σ a(t-2k) k=-[infinity]0 With period T = 2. It can be shown that dx(t) dt = A₁q(t t₁) + A₂q(t — t₂) Determine the values of A₁, t₁, A₂ and t₂
The required values are A₁ = 1, t₁ = 0, A₂ = −1 and t₂ = 1.
The given periodic signal is
x(t) = { ¹ ₂ 1 < t < 2
With period T = 2.
The derivative of this signal is given as
dx(t)dt = A₁q(t − t₁) + A₂q(t − t₂)
where q(t) = Σa(t − 2k), k= −∞ to 0 is an impulse train with period T = 2.
To find the values of A₁, t₁, A₂ and t₂ we need to calculate
q(t − t₁) and q(t − t₂).
From the given impulse train, we have
a(t − 2k) = { ¹ 1 2k ≤ t < 2k + 2 0 otherwise.
Substituting k = 0 in the above equation, we get
a(t) = { ¹ 1 0 ≤ t < 2 0 otherwise.
So, the impulse train can be written as
k(t) = { ¹ 1 0 ≤ t < 2 0 otherwise.
Now,
q(t − t₁) = Σ a(t − t₁ − 2k),
k= −∞ to 0q(t − t₁) = { ¹ 1 t₁ ≤ t < t₁ + 2 0 otherwise.
As period T = 2, we have t₁ = 0 or t₁ = 1.
Similarly,
q(t − t₂) = { ¹ 1 t₂ ≤ t < t₂ + 2 0 otherwise.
Using the given expression, we have
dx(t)dt = A₁q(t − t₁) + A₂q(t − t₂)
Now,
dx(t)dt = { ¹ 0 0 ≤ t < 1 A₁ 1 1 ≤ t < 2 A₂ 1 < t < 2
Therefore,
A₁ = 1 and A₂ = −1.
Now, we can take t₁ = 0 and t₂ = 1.
Hence, the values of A₁, t₁, A₂, and t₂ are
A₁ = 1, t₁ = 0, A₂ = −1 and t₂ = 1.
Thus, the required values are A₁ = 1, t₁ = 0, A₂ = −1 and t₂ = 1.
Learn more about periodic signal here:
https://brainly.com/question/30465056
#SPJ11
What is the value of the flux of a uniform electric field Ē = (-240 NIC) î + (-160 NIC)ġ + (+390 NIC) & across a flat surface with ds = (-1.1 m2)i + (4.2 m2)j + (2.4 m2) k? b) What is the angle between Ē and ds c) What is the projection of ds on the plane perpendicular to Ē?
The value of flux of a uniform electric field is 402 Nm²/C, the angle between Ē and ds is 37.16º and the projection of ds on the plane perpendicular to Ē is 6.32 m².
a) We know that
Flux of electric field = (electric field) * (area)
Φ = Ē.ds
Where,
Ē = (-240 NIC) î + (-160 NIC)ġ + (+390 NIC)
ds = (-1.1 m²)i + (4.2 m²)j + (2.4 m²) k
Φ = (-240 × (-1.1)) + (-160 × (4.2)) + (390 × 2.4)
Φ = 402 Nm²/C
b) To find the angle between Ē and ds, we use the formula,
cos θ = Ē.ds/Ē.ds
cos θ = (Ē.ds) / Ē.Ē
Where,
Ē.ds = (-240 × (-1.1)) + (-160 × (4.2)) + (390 × 2.4) = 402 Nm²/C
Ē.Ē = √[(-240)² + (-160)² + (390)²] = 481 N/C
Therefore, cos θ = 402/481
θ = cos⁻¹ (402/481)θ = 37.16º
c) We know that
Projection of ds on the plane perpendicular to Ē = ds cosθ
Where,
θ = 37.16º
ds = (-1.1 m²)i + (4.2 m²)j + (2.4 m²) k
ds cosθ = (-1.1 m²) cos 37.16º + (4.2 m²) cos 37.16º + (2.4 m²) cos 37.16º
ds cosθ = 1.32 + 3.19 + 1.81
ds cosθ = 6.32 m²
Therefore, the projection of ds on the plane perpendicular to Ē is 6.32 m².
Learn more about Electric field:
https://brainly.com/question/19878202
#SPJ11
Why does the lower part of the child appear so much different in size from the upper part?
*
Captionless Image
The light rays that travel through water and then into air are refracted.
The light rays that travel through air and then into water are reflected.
The light rays that travel through water and then into air are enlarged.
The light rays that travel through air and then into water are reduced.
The size difference between the upper and lower parts of the child in the image is caused by refraction, where light bending in water makes the submerged part appear bigger.
The lower part of the child appears much different in size from the upper part due to the phenomenon of refraction. Refraction is the bending of light as it passes through a substance of different refractive indices. The refractive index of water is higher than that of air. As a result, when light rays pass from water into the air, they have refracted away from the normal and the image appears enlarged. In this image, the child is partially submerged in water. Therefore, the light rays coming from the lower part of the child are refracted as they pass from water to air, making the lower part of the child appear bigger. On the other hand, the upper part of the child is not submerged in water, and the light rays coming from the upper part pass through the air only, making the upper part appear smaller by comparison. In summary, the difference in size between the upper and lower parts of the child in the image is due to the phenomenon of refraction.For more questions on refraction
https://brainly.com/question/27932095
#SPJ8
A square plate with a side length of L m and mass M kg slides over a
oil layer on a plane with a 35° inclination in relation to the ground. The layer thickness
of oil between the plane and the plate is mm (assume a linear velocity profile in the film). if the
terminal velocity of this plate is V m/s, calculate the viscosity of this oil. Ignore effects of
air resistance. Assign values to L, M, a and V to solve this question.
The viscosity of the oil is approximately 0.00635 kg/(m·s), assuming a square plate with a side length of 0.5 m, a mass of 2 kg, an oil layer thickness of 1 mm, and a terminal velocity of 0.2 m/s.
To calculate the viscosity of the oil based on the given parameters, we can use the concept of terminal velocity and the equation for viscous drag force. The terminal velocity is the maximum velocity reached by the plate when the drag force equals the gravitational force acting on it.
The drag force on the plate can be expressed as:
Fd = 6πηLNV
Where:
Fd is the drag force
η is the dynamic viscosity of the oil
L is the side length of the square plate
N is a constant related to the shape of the plate (for a square plate, N = 1.36)
V is the terminal velocity of the plate
The gravitational force acting on the plate is:
Fg = Mg
Where:
M is the mass of the plate
g is the acceleration due to gravity
To find the viscosity (η) of the oil, we can equate the drag force and the gravitational force and solve for η:
6πηLNV = Mg
Rearranging the equation:
η = (Mg) / (6πLNV)
To solve the question, we need specific values or assumptions. Let's assign some values as an example:
L = 0.5 m (side length of the square plate)
M = 2 kg (mass of the plate)
a = 1 mm (thickness of the oil layer)
V = 0.2 m/s (terminal velocity of the plate)
Substituting the values into the equation:
η = (2 kg * 9.8 m/s²) / (6π * 0.5 m * 1.36 * 0.001 m * 0.2 m/s)
Calculating the result:
η ≈ 0.00635 kg/(m·s)
Therefore, the viscosity of the oil is approximately 0.00635 kg/(m·s), assuming a square plate with a side length of 0.5 m, a mass of 2 kg, an oil layer thickness of 1 mm, and a terminal velocity of 0.2 m/s.
Learn more about viscosity on:
https://brainly.com/question/30799929
#SPJ11
A 278 kg crate hangs from the end of a rope of length L = 13.3 m. You push horizontally on the crate with a varying force F to move it distance d = 4.94 m to the side (see the figure). (a) What is the magnitude of F when the crate is in this final position? During the crate's displacement, what are (b) the total work done on it, (c) the work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force F does on the crate. (a) Number ________Units ____________
(b) Number ________Units ____________
(c) Number ________Units ____________
(d) Number ________Units ____________
(e) Number ________Units ____________
A 278 kg crate hangs from the end of a rope of length L = 13.3 m. You push horizontally on the crate with a varying force F to move it distance d = 4.94 m to the side .(a)Magnitude of F: 2671 N(b) Total work done: 13,186 J(c) Work done by gravity: -12,868 J(d) Work done by the rope: 12,868 J(e) Work done by force F: 12,186 J
To solve this problem, we need to analyze the forces involved and calculate the work done. Let's break it down step by step:
(a) To find the magnitude of force F when the crate is in its final position, we need to consider the equilibrium of forces. In this case, the horizontal force you apply (F) must balance the horizontal component of the gravitational force. Since the crate is motionless before and after displacement, the net force in the horizontal direction is zero.
Magnitude of F = Magnitude of the horizontal component of the gravitational force
= Magnitude of the gravitational force × cosine(theta)
The angle theta can be determined using trigonometry. It can be calculated as:
theta = arccos(d / L)
where d is the displacement (4.94 m) and L is the length of the rope (13.3 m).
Once we have the value of theta, we can calculate the magnitude of F using the given information about the crate's mass.
(b) The total work done on the crate can be calculated as the product of the force applied (F) and the displacement (d):
Total work done = F × d
(c) The workdone by the gravitational force on the crate can be calculated using the formula:
Work done by gravity = -m × g × d ×cos(theta)
where m is the mass of the crate (278 kg), g is the acceleration due to gravity (9.8 m/s²), d is the displacement (4.94 m), and theta is the angle calculated earlier.
(d) The work done by the pull on the crate from the rope is given by:
Work done by the rope = F × d × cos(theta)
(e) Knowing that the crate is motionless before and after its displacement, the net work done on the crate by all forces should be zero. Therefore, the work done by your force F can be calculated as:
Work done by force F = Total work done - Work done by gravity - Work done by the rope
Now let's calculate the values:
(a) To find the magnitude of F:
theta = arccos(4.94 m / 13.3 m) = 1.222 rad
Magnitude of F = (278 kg × 9.8 m/s²) ×cos(1.222 rad) ≈ 2671 N
(b) Total work done = F × d = 2671 N × 4.94 m ≈ 13,186 J
(c) Work done by gravity = -m × g × d × cos(theta) = -278 kg × 9.8 m/s² × 4.94 m × cos(1.222 rad) ≈ -12,868 J
(d) Work done by the rope = F × d × cos(theta) = 2671 N * 4.94 m * cos(1.222 rad) ≈ 12,868 J
(e) Work done by force F = Total work done - Work done by gravity - Work done by the rope
= 13,186 J - (-12,868 J) - 12,868 J ≈ 12,186 J
The answers to the questions are:
(a) Magnitude of F: 2671 N
(b) Total work done: 13,186 J
(c) Work done by gravity: -12,868 J
(d) Work done by the rope: 12,868 J
(e) Work done by force F: 12,186 J
To learn more about gravitational force visit: https://brainly.com/question/24783651
#SPJ11
When a 2.20−kg object is hung vertically on a certain light spring described by Hooke's law, the spring stretches 2.66 cm. (a) What is the force constant of the spring? N/m (b) If the 2.20−kg object is removed, how far will the spring stretch if a 1.10-kg block is hung on it? cm (c) How much work must an external agent do to stretch the same spring 7.00 cm from its unstretched position? J A block of mass 2.60 kg is placed against a horizontal spring of constant k=755 N/m and pushed so the spring compresses by 0.0750 m (a) What is the elastic potential energy of the block-spring system (in J)? 3 (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s ) after leaving the spring. m/s
The force constant of the spring is approximately 80.45 N/m, the spring will stretch approximately 0.1349 m (13.49 cm), the external agent must do approximately 1.739 J of work to stretch the spring, the elastic potential energy to be approximately 2.678 J and the speed of the block after leaving the spring to be approximately 0.618 m/s.
(a) The force constant of the spring can be calculated using Hooke's law, which states that the force exerted by a spring is directly proportional to its displacement. The formula for the force exerted by a spring is given by
[tex]F = k * x[/tex]
, where F is the force, k is the force constant (spring constant), and x is the displacement. Given that the spring stretches 2.66 cm (0.0266 m) when a 2.20 kg object is hung on it, we can rearrange the formula to solve for the force constant:
[tex]k = F / x = (m * g) / x = (2.20 kg * 9.8 m/s^2) / 0.0266 m[/tex]
(b) If the 2.20 kg object is removed and a 1.10 kg block is hung on the spring, we can use Hooke's law to find the spring's stretch. The force exerted by the spring is equal to the weight of the block:
[tex]F = m * g = 1.10 kg * 9.8 m/s^2[/tex]
Using the formula F = k * x and rearranging it to solve for x, we have:
[tex]x = F / k = (1.10 kg * 9.8 m/s^2) / 80.45 N/m[/tex]
(c) To find the work required to stretch the spring by 7.00 cm (0.07 m), we use the formula for work:
[tex]W = (1/2) * k * x^2[/tex]
Plugging in the values, we have:
[tex]W = (1/2) * 80.45 N/m * (0.07 m)^2[/tex]
(d) The elastic potential energy of the block-spring system can be calculated using the formula:
[tex]PE = (1/2) * k * x^2[/tex]
Plugging in the values, we have:
[tex]PE = (1/2) * 755 N/m * (0.0750 m)^2[/tex]
(e) After leaving the spring, the block's speed can be determined using the conservation of mechanical energy. Since the surface is frictionless, the initial potential energy stored in the spring is converted entirely into the kinetic energy of the block:
[tex]PE = KE(1/2) * k * x^2 = (1/2) * m * v^2[/tex]
Simplifying and solving for v, we have:
[tex]v = sqrt((k * x^2) / m)v = sqrt((755 N/m * 0.0750 m)^2 / 2.60 kg)[/tex]
To learn more about force constant
brainly.com/question/29598403
#SPJ11