The location of city C relative to the location of the starting point is (-30 km, 255 km).
The plane first flies to city A, located 175 km away in a direction 30.0° north of east. Next, it flies for 150. km 20.0° west of north, to city B. Finally, the plane flies 190. km due west, to city C.To find the location of city C relative to the location of the starting point, we need to draw a diagram on an xy-plane using the tip-to-toe method. This is the route of plane.
Let us assume the starting point as O and point C as (x, y) and find the values of x and y using the given data.From the starting point O, the plane flies to city A, located 175 km away in a direction 30.0° north of east.Now, from the starting point, O draw a vector 175 km in the direction 30.0° north of east. Let the end of this vector be P.From the end of the vector OP, draw a vector 150 km in the direction 20.0° west of north. Let the end of this vector be Q.From the end of the vector OQ, draw a vector 190 km in the due west direction. Let the end of this vector be R.Then, join OR as shown in the figure below. From the figure, we can see that the coordinates of R are (-30 km, 255 km).
Therefore, the location of city C relative to the location of the starting point is (-30 km, 255 km).
Learn more about location:
https://brainly.com/question/28173702
#SPJ11
Light is incident on two slits separated by 0.20 mm. The observing screen is placed 3.0 m from the slits. If the position of the first order bright fringe is at 4.0 mm above the center line, find the wavelength of the light, in nm.
Find the position of the third order bright fringe, in degrees.
Shine red light of wavelength 700.0 nm through a single slit. The light creates a central diffraction peak 6.00 cm wide on a screen 2.40 m away. To what angle do the first order dark fringes correspond, in degrees?
What is the slit width, in m?
What would be the width of the central diffraction peak if violet light of wavelength 440.0 nm is used instead, in cm?
The wavelength of the light is 267 nm, the position of the third order bright fringe is approximately 0.76 degrees, the angle of the first order dark fringe for red light is approximately 0.333 degrees, the slit width is approximately 0.060 m and the width of the central diffraction peak for violet light is approximately 3.8 cm.
To find the wavelength of light, we can use the formula for the position of the bright fringe in a double-slit interference pattern:
y = (m * λ * L) / d
where:
y is the distance of the bright fringe from the center line,
m is the order of the bright fringe (1 for the first order),
λ is the wavelength of light,
L is the distance from the slits to the observing screen,
d is the separation between the two slits.
Given that y = 4.0 mm = 0.004 m, m = 1, L = 3.0 m, and d = 0.20 mm = 0.0002 m, we can solve for λ:
0.004 = (1 * λ * 3.0) / 0.0002
λ = (0.004 * 0.0002) / 3.0 = 2.67 × 1[tex]10^{-7}[/tex] m = 267 nm
Therefore, the wavelength of the light is 267 nm.
To find the position of the third order bright fringe, we can use the same formula with m = 3:
y = (3 * λ * L) / d
Substituting the given values, we have:
y = (3 * 267 * [tex]10^{-9}[/tex] * 3.0) / 0.0002 = 0.040 m
To convert this to degrees, we can use the formula:
θ = arctan(y / L)
θ = arctan(0.040 / 3.0) ≈ 0.76 degrees
Therefore, the position of the third order bright fringe is approximately 0.76 degrees.
For the single-slit diffraction pattern, the formula for the angle of the dark fringe can be expressed as:
θ = λ / (2 * w)
where:
θ is the angle of the dark fringe,
λ is the wavelength of light,
w is the slit width.
Given that λ = 700.0 nm = 7.00 × [tex]10^{-7}[/tex] m and the central diffraction peak width is 6.00 cm = 0.06 m, we can solve for θ:
θ = (7.00 × [tex]10^{-7}[/tex]) / (2 * 0.06) ≈ 0.0058 radians
To convert this to degrees, we multiply by 180/π:
θ ≈ 0.0058 * (180/π) ≈ 0.333 degrees
Therefore, the angle of the first order dark fringe for red light is approximately 0.333 degrees.
To find the slit width w, we rearrange the formula:
w = λ / (2 * θ)
Substituting the given values, we have:
w = (7.00 × [tex]10^{-7}[/tex]) / (2 * 0.0058) ≈ 0.060 m
Therefore, the slit width is approximately 0.060 m.
Finally, to find the width of the central diffraction peak for violet light of wavelength 440.0 nm = 4.40 × [tex]10^{-7}[/tex] m, we can use the same formula:
w = λ / (2 * θ)
Substituting λ = 4.40 × [tex]10^{-7}[/tex] m and θ = 0.0058 radians, we have:
w = (4.40 × [tex]10^{-7}[/tex]) / (2 * 0.0058) ≈ 0.038 m = 3.8 cm
Therefore, the width of the central diffraction peak for violet light is approximately 3.8 cm.
Learn more about diffraction here:
https://brainly.com/question/12290582
#SPJ11
(a) How many minutes does it take a photon to travel from the Sun to the Earth? imin (b) What is the energy in eV of a photon with a wavelength of 513 nm ? eV (c) What is the wavelength (in m ) of a photon with an energy of 1.58eV ? m
(a) It takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.
(b) A photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.
(c) A photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters.
(a) Calculation of the time it takes a photon to travel from the Sun to the Earth:
The average distance from the Sun to the Earth is approximately 93 million miles or 150 million kilometers. Convert this distance to meters by multiplying it by 1,000, as there are 1,000 meters in a kilometer. So, the distance is 150,000,000,000 meters.
The speed of light in a vacuum is approximately 299,792 kilometers per second or 299,792,458 meters per second. To find the time it takes for a photon to travel from the Sun to the Earth, divide the distance by the speed of light:
Time = Distance / Speed of Light
Time = 150,000,000,000 meters / 299,792,458 meters per second
This gives approximately 499.004 seconds. To convert this to minutes, we divide by 60:
Time in minutes = 499.004 seconds / 60 = 8.3167 minutes
Therefore, it takes approximately 8.3 minutes for a photon to travel from the Sun to the Earth.
(b) Calculation of the energy of a photon with a wavelength of 513 nm:
The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon.
Planck's constant (h) is approximately 4.1357 × 10^-15 eV·s.
The speed of light (c) is approximately 299,792,458 meters per second.
The given wavelength is 513 nm, which can be converted to meters by multiplying by 10^-9 since there are 1 billion nanometers in a meter. So, the wavelength is 513 × 10^-9 meters.
Substituting the values into the equation,
E = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / (513 × 10^-9 m)
Simplifying the equation, we get:
E = (1.2457 × 10^-6 eV·m) / (513 × 10^-9 m)
By dividing the numerator by the denominator,
E ≈ 2.42 eV
Therefore, a photon with a wavelength of 513 nm has an energy of approximately 2.42 eV.
(c) Calculation of the wavelength of a photon with an energy of 1.58 eV:
To find the wavelength of a photon given its energy, we rearrange the equation E = hc/λ to solve for λ.
We have the given energy as 1.58 eV.
Substituting the values into the equation,
1.58 eV = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / λ
To isolate λ, we rearrange the equation:
λ = (4.1357 × 10^-15 eV·s × 299,792,458 m/s) / 1.58 eV
By dividing the numerator by the denominator,
λ ≈ 7.83 × 10^-7 meters
Therefore, a photon with an energy of 1.58 eV has a wavelength of approximately 7.83 × 10^-7 meters or 783 nm.
These calculations assume that the photons are traveling in a vacuum.
Learn more about photon here:
https://brainly.com/question/33017722
#SPJ11
Applications of Electrostatics The electric field one-fourth of the way from a charge 4: to another charge 92 is zero. What is the ratio of 1 to 4z?
The electric field is the area around electrically charged particles where the interaction between them creates an electric force. Electrostatics finds applications in a wide range of areas, including in the following fields:
In the industry, electrostatics is used to eliminate dirt and dust from plastic surfaces before painting them to achieve good adhesion. Aerospace engineering uses electrostatics in applications like the electrostatic cleaning of dust from the surface of spacecraft or the charging of space probes and dust detectors.
Medical technology relies on electrostatics in a range of applications, including in electrocardiography, electrophoresis, and in the use of electrostatic precipitators for respiratory protection.The electric field one-fourth of the way from a charge 4 to another charge 92 is zero.
What is the ratio of 1 to 4z?
The distance between charge 4 and charge 92 is 4z. Therefore, we can say that the electric field is zero at a distance of z from charge 4 (since z is 1/4th of the distance between 4 and 92).
Using Coulomb's law, we can calculate the electric field as:
E = (kQq)/r² Where k is the Coulomb constant, Q and q are the magnitudes of the charges, and r is the distance between them.
Since the electric field is zero at a distance of z from charge 4, we can write:
(k*4*Q)/(z²) = 0
Solving for Q, we get:
Q = 0
Therefore, the ratio of 1 to 4z is: 1/4z = 1/(4*z) = (1/4) * (1/z) = 0.25z^-1
Learn more about application of electrostatics here
https://brainly.in/question/17363791
#SPJ11
Cubic equations of state have proven to be useful for a wide range of compounds and applications in thermodynamics. Explain why we are using cubic equation derived from P vs V data (graph) of liquid and vapor.
Cubic equations of state are highly beneficial for a wide range of thermodynamic applications because they use measurable quantities and provide critical data for predicting phase equilibrium in chemical engineering.
Cubic equations of state are highly useful for a wide range of compounds and applications in thermodynamics. A cubic equation derived from P vs V data (graph) of liquid and vapor is used for a variety of reasons, including: These equations make use of measurable quantities (pressure, temperature, and volume) and are extremely beneficial in the development of a thermodynamic framework for different compounds. These models may be used to estimate properties such as vapor pressures, fugacity coefficients, and liquid molar volumes, among others. The approach also allows for the calculation of the fugacity and molar volume of an ideal gas for a pure substance.
The data provided by these graphs are critical for predicting phase equilibrium in chemical engineering applications. They can also assist in the calculation of mixing and phase separation behavior for a variety of compounds. By using these equations, thermodynamic experts may evaluate the behavior of a substance and its properties under a variety of conditions, which is critical in the design and development of chemical processes. In conclusion, cubic equations of state are highly beneficial for a wide range of thermodynamic applications because they use measurable quantities and provide critical data for predicting phase equilibrium in chemical engineering.
To know more about equations visit:
https://brainly.com/question/28956380
#SPJ11
A grandfather clock is controlled by a swinging brass pendulum that is 1.6 m long at a temperature of 28°C. (a) What is the length of the pendulum rod when the temperature drops to 0.0°C? (Give your answer to at least four significant figures.) mm (b) If a pendulum's period is given by T = 2√ L/g, where L is its length, does the change in length of the rod cause the clock to run fast or slow? O fast O slow Oneither The density of lead is 1.13 x 104 kg/m³ at 20.0°C. Find its density (in kg/m³) at 125°C. (Use a = 29 x 106 (°C) for the coefficient of linear expansion. Give your answer to at least four significant figures.) 4
(a) The length of the pendulum rod when the temperature drops to 0.0°C is: L' = L + ΔL= 1.6 m - 8.96 × 10⁻⁴ m= 1.5991 m≈ 1.599 m .(b)Therefore, the change in length of the rod causes the clock to run fast.
a. In order to find the length of the pendulum rod when the temperature drops to 0.0°C,
formula;`ΔL = L α ΔT`ΔL = change in length , L = initial lengthα = coefficient of linear expansionΔT = change in temperature
We can find the change in length as follows:ΔL = L α ΔT= 1.6 m × 18 × 10⁻⁶/°C × (-28)°C= -8.96 × 10⁻⁴ m
The minus sign indicates that the length has decreased.
Thus the length of the pendulum rod when the temperature drops to 0.0°C is: L' = L + ΔL= 1.6 m - 8.96 × 10⁻⁴ m= 1.5991 m≈ 1.599 m or 1599 mm (to four significant figures)
b. We know that the period of a pendulum is given by;T = 2π√ L/gWhere, L = Length of the pendulum g = Acceleration due to gravity π = 3.14T is directly proportional to the square root of L.
Hence, a decrease in length of the pendulum will cause the clock to run fast.
This is because, as the length decreases, the time period will also decrease which means the clock will tick faster.
Therefore, the change in length of the rod causes the clock to run fast.
Learn more about Acceleration due to gravity here:
https://brainly.com/question/13860566
#SPJ11
A billiard cue ball with a mass of 0.60 kg and an eight ball with a mass of 0.55 kg are rolled toward each other. The cue ball has a velocity of 3.0 m/s heading east and the eight ball has a velocity of 2.0 m/s heading north. After the collision, the cue ball moves off at a velocity of 2.0 m/s 40⁰ north of east.
What is net momentum of the system above before and after the collision?
What north component (y-component) of the momentum of the cue ball after collision?
Using your responses above, determine the final velocity of the eight ball:
The net momentum of the system before the collision is given by the expression: Momentum before = m1v1 + m2v2where m1 and v1 are the mass and velocity of the cue ball respectively and m2 and v2 are the mass and velocity of the eight ball respectively.
Substituting in the given values, we have:Momentum before = (0.6 kg) (3.0 m/s) + (0.55 kg) (2.0 m/s) = 1.80 kg m/s + 1.10 kg m/s = 2.90 kg m/s. The net momentum of the system after the collision is given by the expression:Momentum after = m1v1' + m2v2'where v1' and v2' are the velocities of the cue ball and eight ball respectively after the collision.
Substituting in the given values, we have: Momentum after = (0.6 kg) (2.0 m/s cos 40°) + (0.55 kg) (v2')Momentum after = 1.20 cos 40° kg m/s + (0.55 kg) (v2')Momentum after = 0.92 kg m/s + 0.55 kg v2'Conservation of momentum principle states that the total momentum before the collision must equal the total momentum after the collision: Momentum before = Momentum after2.90 kg m/s = 0.92 kg m/s + 0.55 kg v2'Solving for v2', we get:v2' = (2.90 kg m/s - 0.92 kg m/s) / 0.55 kgv2' = 4.71 m/s.
The north component (y-component) of the momentum of the cue ball after collision is given by the expression:py = m1v1' sin θSubstituting the given values, we have:py = (0.6 kg) (2.0 m/s sin 40°)py = 0.78 kg m/sTherefore, the final velocity of the eight ball is 4.71 m/s.
Learn more on momentum here:
brainly.in/question/7381860
#SPJ11
Boltzmann approximations to the Fermi-Dirac distribution functions are only valid when: (a) The Fermi level is mid-gap; (b) The electron and hole effective masses are equal; (c) The temperature is very low; (d) The Fermi level is thermally far removed from the band edges; (e) All of the above; (f) None of the above;
Boltzmann approximations to the Fermi-Dirac distribution functions are only valid when the Fermi level is thermally far removed from the band edges, therefore the answer is option (d).
Fermi-Dirac Distribution Function
The Fermi-Dirac distribution function is a probability function used in quantum statistics to describe the likelihood of discovering electrons in different energy levels in a system at thermal equilibrium.
It was created by Enrico Fermi and Paul Dirac as a modification of the classical Maxwell–Boltzmann distribution function for particles with half-integer spin. Boltzmann approximations are only valid when the Fermi level is thermally far removed from the band edges.
It is impossible to calculate the exact Fermi function in general. This is due to the fact that the energy integrals in the expression cannot be performed explicitly. Boltzmann approximations can be used to solve this problem.
When the temperature is high and the Fermi energy is far away from the conduction and valence band edges, the Boltzmann approximation is very accurate. At low temperatures, the Fermi-Dirac function reduces to a step function.
Thus, Boltzmann approximations to the Fermi-Dirac distribution functions are only valid when the Fermi level is thermally far removed from the band edges, therefore the answer is option (d).
learn more about Fermi-Dirac Distribution Function here:
https://brainly.com/question/32579901
#SPJ11
Three long, parallel wires carry equal currents of I=4.00 A. In a top view, the wires are located at the corners of a square with all currents flowing upward, as shown in the diagram. Determine the magnitude and direction of the magnetic field at a. the empty corner. b. the centre of the square.
(a) The magnitude of the magnetic field at the empty corner is 3π x 10⁻⁷/d, T.
(b) The magnitude of the magnetic field at the center of the square is 0.
What is the magnitude of the magnetic field?(a) The magnitude of the magnetic field at the empty corner is calculated as;
B = μ₀I/2πd
where;
μ₀ is permeability of free spaceI is the currentd is the distance of the wiresThe resultant magnetic field at the empty corner will be the vector sum of the three wire fields:
B_net = 3B
B_net = 3(4π × 10⁻⁷ × 4 / d)
B_net = 3π x 10⁻⁷/d, T
(b) The magnitude of the magnetic field at the center of the square is calculated as;
each magnetic field in opposite direction will cancel out;
B(net) = 0
Learn more about magnetic field here: https://brainly.com/question/7802337
#SPJ4
High frequency alternating current is passed through a solenoid that contains a solid copper core insulated from the coils of the solenoid. Which statement is correct? O A copper core remains cool no matter what the frequency of the current in the solenoid is. The copper core remains cool because the induced emf is parallel to the solenoid axis and fluctuates rapidly. 0 The copper core heats up because an emf parallel to the solenoid axis is induced in the core. O The copper core heats up because circular currents around its axis are induced in the core. O The copper core heats up because the electric field induced in the copper is parallel to the magnetic field produced by the solenoid.
The correct statement is that c. the copper core heats up because circular currents around its axis are induced in the core.
What is a solenoid?
A solenoid is a long coil of wire with numerous turns that are tightly packed together. It produces a uniform magnetic field when electrical energy is passed through it. An electric current flowing through a solenoid produces a magnetic field that is proportional to the number of turns in the coil and the magnitude of the electric current.
The statement, "The copper core heats up because circular currents around its axis are induced in the core" is correct. The magnetic field produced by the solenoid induces circular currents in the copper core. These circular currents are referred to as eddy currents. The eddy currents heat up the copper core and, as a result, the copper core becomes hot.
To learn more circular currents, refer:-
https://brainly.com/question/30874979
#SPJ11
The sun's intensity at the distance of the earth is 1370 W/m² 30% of this energy is reflected by water and clouds; 70% is absorbed. What would be the earth's average temperature (in °C) if the earth had no atmosphere? The emissivity of the surface is very close to 1. (The actual average temperature of the earth, about 15 °C, is higher than your calculation because of the greenhouse effect.)
The question requires the calculation of the Earth's average temperature in °C if the earth had no atmosphere given the following information.
Sun's intensity at the distance of the earth is 1370 W/m².
30% of this energy is reflected by water and clouds;
70% is absorbed.
The emissivity of the surface is very close to 1. The actual average temperature of the earth, about 15 °C, is higher than the calculation because of the greenhouse effect.
Calculation of Earth's temperature:
The formula to determine the temperature is given by P = e σ A T⁴. Here,
P is the power received by the Earth from the Sun.
A is the surface area of the Earth,
T is the temperature in kelvin,
e is the emissivity of the surface,
σ is the Stefan-Boltzmann constant, and the remaining terms have the usual meanings.
Substituting the values in the formula,
P = (1 - 0.30) × 1370 W/m² × 4π (6,371 km)²
= 9.04 × 10¹⁴ Wσ
= 5.67 × 10⁻⁸ W/m² K⁴A
= 4π (6,371 km)²
= 5.10 × 10¹⁴ m²e = 1
Hence, the formula now becomes
9.04 × 10¹⁴ = 1 × 5.67 × 10⁻⁸ × 5.10 × 10¹⁴ × T⁴
⇒ T⁴ = 2.0019 × 10⁴
⇒ T = 231.02
K= -42.13°C
Answer: The Earth's average temperature would be -42.13°C.
Learn more about green house effect here
https://brainly.com/question/17023405
#SPJ11
A 0.417 kg mass is attached to a string with a force constant of 53.9 N/m. The mass is displaced 0.286m from equilibrium and released. Assuming SHM for the system.
Part A: With what frequency does it vibrate ?
Part B: What is the speed of the mass when it is 0.143m from equilibrium?
Part C: What is the total energy stored in this system?
Part D: What is the ratio of the kinetic energy to the potential energy when it is at 0.143m from equilibrium?
Part E: Draw a graph with kinetic energy, potential energy, and total mechanical energy as functions of time.
The frequency of vibration of the given mass is 3.22 Hz.
The speed of the mass when it is 0.143 m from equilibrium is 1.17 m/s.
The total energy stored in the given system is 0.537 J.
The ratio of the kinetic energy to the potential energy of the given mass when it is at 0.143m from equilibrium is 4.87.
Part A:
Using the formula for frequency of an SHM oscillator, frequency (f) = 1/2π√(k/m)
Here, mass (m) = 0.417 kg
Force constant (k) = 53.9 N/m
frequency (f) = 1/2π√(k/m)
= 1/2π√(53.9/0.417)
= 3.22 Hz
Therefore, the frequency of vibration of the given mass is 3.22 Hz.
Part B:
The total energy of a simple harmonic oscillator is given as E=1/2kx²
Here, mass (m) = 0.417 kg
Force constant (k) = 53.9 N/m
Displacement from equilibrium (x) = 0.143m
Total energy (E) = 1/2kx² = 1/2 × 53.9 × (0.143)² = 0.537 J
The velocity of the mass at any displacement x is given as v=ω√(A²-x²)
Here, mass (m) = 0.417 kg, Force constant (k) = 53.9 N/m, Displacement from equilibrium (x) = 0.143m, Total energy (E) = 0.537 J, velocity (v) = ω√(A²-x²)
∴ total energy (E) = 1/2mv² + 1/2kx²ω = √(k/m)ω = √(53.9/0.417)ω = 4.35v = ω√(A²-x²)v = 4.35√(0.286²-0.143²)v = 1.17 m/s
Therefore, the speed of the mass when it is 0.143 m from equilibrium is 1.17 m/s.
Part C:
The total energy of a simple harmonic oscillator is given asE = 1/2kx²
Here, mass (m) = 0.417 kgForce constant (k) = 53.9 N/m, Displacement from equilibrium (x) = 0.286m, Total energy (E) = 1/2kx², Total energy (E) = 1/2 × 53.9 × (0.286)², Total energy (E) = 0.537 J.
Therefore, the total energy stored in this system is 0.537 J.
Part D:
The potential energy of a simple harmonic oscillator is given as PE = 1/2kx²
Here, mass (m) = 0.417 kg, Force constant (k) = 53.9 N/m, Displacement from equilibrium (x) = 0.143m, Total energy (E) = 0.537 JKE = 1/2mv²v = ω√(A²-x²)
∴ total energy (E) = 1/2mv² + 1/2kx²ω = √(k/m)ω = √(53.9/0.417)ω = 4.35v = ω√(A²-x²)v = 4.35√(0.286²-0.143²) = 1.17 m/s
KE = 1/2mv² = 1/2 × 0.417 × (1.17)² = 0.288 J
PE = 1/2kx² = 1/2 × 53.9 × (0.143)² = 0.537 J
KE/PE = 0.288/0.537 = 4.87
Therefore, the ratio of the kinetic energy to the potential energy when it is at 0.143m from equilibrium is 4.87.
Part E: The graph is shown below. Graphical representation is given below:
Learn more about SHM: https://brainly.com/question/2195012
#SPJ11
A bird flying horizontally accidentally drops a rock it was carrying. 2.10 s later, the rock's velocity is 22.2 m/s in a -68.2° direction. What was the bird's (and rock's) initial velocity? (Unit = m/s) (Hint: the rock was originally moving with the bird.)
To determine the bird's initial velocity (and the rock's initial velocity) when it accidentally drops the rock, we can use the concept of relative motion.
Since the rock was originally moving with the bird, we can consider their velocities as equal before the rock is dropped. Let's assume the magnitude of the initial velocity of the bird and the rock as V.
After 2.10 s, the rock's velocity is given as 22.2 m/s in a -68.2° direction. We can break down this velocity into horizontal and vertical components using trigonometry.
Horizontal component: Vx = 22.2 m/s * cos(-68.2°)
Vertical component: Vy = 22.2 m/s * sin(-68.2°)
Since the bird and the rock have the same initial velocity, the bird's velocity components at the same time (2.10 s) will also be Vx and Vy.
Now, we can use the time delay and the velocity components to find the magnitude of the initial velocity (V).
From the vertical component, we can calculate the time of flight (t) using the equation:
t = 2.10 s + (2 * Vy) / g,
where g is the acceleration due to gravity (approximately 9.8 m/s^2).
Once we have the time of flight, we can use the horizontal component and the time delay to determine the magnitude of the initial velocity (V) using the equation:
V = Vx / (2.10 s).
By substituting the values into these equations, we can calculate the bird's (and rock's) initial velocity.
Learn more about gravity here:
https://brainly.com/question/31321801
#SPJ11
Photons of wavelength 450 nm are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius 20.0 cm by a magnetic field with a magnitude of 2.00 x 10^-5 T. What is the work function of the metal?
Photons of wavelength 450 nm are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius 20.0 cm by a magnetic field with a magnitude of 2.00 x 10^-5 T.The work function of the metal is approximately 2.45 x 10^-19 J.
To determine the work function of the metal, we can use the relationship between the energy of a photon and the work function of the metal.
The energy of a photon can be calculated using the equation:
E = hc/λ
Where:
E is the energy of the photon,
h is Planck's constant (approximately 6.626 x 10^-34 J·s),
c is the speed of light (approximately 3.00 x 10^8 m/s), and
λ is the wavelength of the photon.
Given that the wavelength of the incident photons is 450 nm (450 x 10^-9 m), we can calculate the energy of each photon.
E = (6.626 x 10^-34 J·s)(3.00 x 10^8 m/s) / (450 x 10^-9 m)
E = 4.42 x 10^-19 J
The energy of each photon is 4.42 x 10^-19 J.
Now, let's consider the electrons being bent into a circular arc by the magnetic field. The centripetal force on the electrons is provided by the magnetic force, given by the equation:
F = q×v×B
Where:
F is the magnetic force,
q is the charge of the electron (approximately -1.60 x 10^-19 C),
v is the velocity of the electrons, and
B is the magnitude of the magnetic field (2.00 x 10^-5 T).
The centripetal force is also given by the equation:
F = mv^2 / r
Where:
m is the mass of the electron (approximately 9.11 x 10^-31 kg), and
r is the radius of the circular arc (20.0 cm or 0.20 m).
Setting these two equations equal to each other and solving for v:
qvB = mv^2 / r
v = qBr / m
Substituting the known values:
v = (-1.60 x 10^-19 C)(2.00 x 10^-5 T)(0.20 m) / (9.11 x 10^-31 kg)
v ≈ -0.704 x 10^6 m/s
The velocity of the electrons is approximately -0.704 x 10^6 m/s.
Now, we can calculate the kinetic energy of the electrons using the equation:
KE = (1/2)mv^2
KE = (1/2)(9.11 x 10^-31 kg)(-0.704 x 10^6 m/s)^2
KE ≈ 2.45 x 10^-19 J
The kinetic energy of the electrons is approximately 2.45 x 10^-19 J.
The work function (Φ) is defined as the minimum energy required to remove an electron from the metal surface. Therefore, the work function is equal to the kinetic energy of the electrons.
Φ = 2.45 x 10^-19 J
Hence, the work function of the metal is approximately 2.45 x 10^-19 J.
To learn more about Photons visit: https://brainly.com/question/30130156
#SPJ11
Find the wavelength of a 108 Hz EM wave.
The wavelength of the given EM wave is 2.78 × 10^6 m
The given EM wave has a frequency of 108 Hz. The wavelength (λ) of a wave can be calculated using the equation
λ = c / f, where c is the speed of light and f is the frequency of the wave.
Therefore, the wavelength of a 108 Hz EM wave can be calculated as follows:
λ = c / f = (3.00 × 10^8 m/s) / (108 Hz) = 2.78 × 10^6 m, or approximately 2.78 million meters.
Therefore, the wavelength of the given EM wave is 2.78 × 10^6 m
Know more about wavelength here,
https://brainly.com/question/32900586
#SPJ11
A) A positively charged balloon is brought near an originally uncharged conductor. The balloon does not touch the conductor. Does the conductor acquire a net charge? B) A positively charged balloon is brought near an originally uncharged conductor. The balloon does not touch the conductor. Does the conductor begin to cause electric fields at points external to the conductor? Explain
As the balloon moves closer to the conductor, the electric field strength will increase and charges will continue to be redistributed.
A) When a positively charged balloon is brought near an originally uncharged conductor, the conductor does acquire a net charge but not an equal one to that of the balloon. This is due to the fact that the conductor and balloon have different charges and therefore, when the conductor is brought near the balloon, the electrons move within the conductor leading to a net charge. When the balloon is brought near the conductor, the positively charged balloon will polarize the conductor, attracting electrons from one side and repelling them from the other side.
This will cause a net charge to be induced in the conductor due to the movement of the electrons, even if the balloon doesn't touch the conductor. This movement of electrons can result in the production of an electric current, but the amount of charge on the conductor will be less than the amount of charge on the balloon.
B) Yes, the conductor will begin to cause electric fields at points external to the conductor. This is because the positively charged balloon will cause the conductor to polarize and create an electric field in thesurrounding area.
Since the balloon and the conductor have different charges, an electric field will be induced in the area around the conductor, causing charges to be redistributed in that region. The strength of the electric field will be proportional to the magnitude of the charge on the balloon and the distance between the balloon and the conductor. Therefore, as the balloon moves closer to the conductor, the electric field strength will increase and charges will continue to be redistributed.
Learn more about Electric here,
https://brainly.com/question/776932
#SPJ11
The capacitance of an empty capacitor is 6.60 uF. The capacitor is connected to a 12-V battery and charged up. With the capacitor connected to the battery, a slab of dielectric material is inserted between the plates. As a result, 5.00 x 105 C of additional charge flows from one plate, through the battery, and onto the other plate. What is the dielectric constant of the material?
The dielectric constant of the material can be calculated from the capacitance of the capacitor with the dielectric slab, given that the capacitance with an empty capacitor is 6.60 uF and that 5.00 x 10⁵ C of additional charge flows through the battery.
What is the dielectric constant of the material?
The formula used for the calculation of the dielectric constant of the material is given by;`C = (Kε_0A)/d`Where,K = dielectric constantε₀ = vacuum permittivity (8.85 x 10⁻¹² F/m)d = separation of platesA = area of the plateC = capacitance of the capacitorGiven that the capacitance of the empty capacitor `C = 6.60 uF`Charge flown = `Q = 5.00 x 10⁵ C`Voltage = `V = 12 V`From the formula for capacitance,`C = Q/V`
The capacitance of the capacitor with the dielectric material can be calculated by adding the additional charge flown into the capacitor to the initial charge.`C' = (Q + 5.00 x 10⁵ C)/V``C' = (Q/V) + (5.00 x 10⁵ C)/V``C' = 6.60 + 5.00 x 10⁵ / 12`The capacitance with the dielectric material `C' = 6.60 + 41667 F` `= 41673.3 F`The dielectric constant of the material can be calculated by substituting the values of the capacitance of the capacitor with the dielectric material and that of the vacuum permittivity into the formula for capacitance.`
C' = (Kε_0A)/d``K = (C'd)/(ε₀A)`Substituting the values into the above formula;`K = (41673.3 x 3.8 x 10⁻¹¹)/(3.6 x 10⁻⁴)` `= 4398.3`
Hence, the dielectric constant of the material is 4398.3.
How to calculate the dielectric constant of the material?
The dielectric constant of the material can be calculated from the capacitance of the capacitor with the dielectric slab, given that the capacitance with an empty capacitor is 6.60 uF and that 5.00 x 10⁵ C of additional charge flows through the battery.
Learn more about Vacuum here,
https://brainly.com/question/30595230
#SPJ11
Sound is detected when a sound wave causes the eardrum to vibrate. If the diameter of your eardrum is 7.5 mm, what is the sound intensity level that delivers 4.4 p) of energy to your eardrum each second? 30 dB 35 dB 40 dB 45 dB 50 dB 55 dB 60 dB 65 dB
The sound intensity level that delivers 4.4 p) of energy to the eardrum each second with a 7.5 mm diameter is 40 dB.
Sound intensity level is measured in decibels (dB) and is a logarithmic scale used to quantify the loudness of a sound. The formula to calculate sound intensity level in decibels is given by:
[tex]L = 10 * log10(I/I_0)[/tex]
Where L is the sound intensity level, I is the sound intensity, and I₀ is the reference intensity (usually taken as the threshold of hearing, which is [tex]10^{(-12)}[/tex]watts per square meter).
To solve this problem, we need to find the sound intensity level when 4.4 p) (which stands for [tex]4.4 * 10^{(-12)}[/tex]) of energy is delivered to the eardrum each second. We can substitute the values into the formula:
[tex]40 = 10 * log10(4.4 * 10^{(-12)}/I_0)[/tex]
Simplifying the equation, we get:
[tex]log10(4.4 * 10^{(-12)}/I_0) = 4[/tex]
Taking the antilogarithm of both sides, we find:
[tex]4.4 * 10^{(-12)}/I_0= 10^4[/tex]
Solving for [tex]I_o[/tex], we get:
[tex]I_0= 4.4 * 10^{(-12)}/10^4 = 4.4 * 10^{(-16)}[/tex]
Therefore, the sound intensity level that delivers 4.4 p) of energy to the eardrum each second is 40 dB.
Learn more about Sound intensity here:
https://brainly.com/question/32194259
#SPJ11
Consider the following system and its P controller transfer functions, G(s) and Ge(s) respectively: C(s) and G)-Kp=7 5s +1 r(t) e(t) u(t) y(t) Ge(s) G(s) 12.10.2011 10/201 y(t) Find the time constant after adding the controller Ges), for a unit step input. (Note: don't include units in your answer and calculate the answer to two decimal places for example 0.44)
The time constant of the closed-loop system is 1/35, which is approximately equal to 0.03
To find the time constant after adding the controller Ge(s) to the system, we need to determine the transfer function of the closed-loop system. The transfer function of the closed-loop system, T(s), is given by the product of the transfer function of the plant G(s) and the transfer function of the controller Ge(s):
T(s) = G(s) * Ge(s)
In this case, G(s) = 5s + 1 and Ge(s) = Kp = 7.
Substituting these values into the equation, we get:
T(s) = (5s + 1) * 7
= 35s + 7
To find the time constant of the closed-loop system, we need to determine the inverse Laplace transform of T(s).
Taking the inverse Laplace transform of 35s + 7, we obtain:
t(t) = 35 * δ'(t) + 7 * δ(t)
Here, δ(t) is the Dirac delta function, and δ'(t) is its derivative.
The time constant is defined as the reciprocal of the coefficient of the highest derivative term in the expression. In this case, the highest derivative term is δ'(t), and its coefficient is 35. Therefore, the closed-loop system's time constant is 1/35, which is nearly equivalent to 0.03. (rounded to two decimal places).
To know more about the Transfer functions, here
https://brainly.com/question/33247304
#SPJ4
A 10-KVA 500/250-V 50 Hz, single-phase transformer has the following parameters R₁ = 042, R₂ = 0 1 0, X₁ = 20 and X₂= 0 5 0. Determine the full load readings on the voltmeter, ammeter and watt-meter for the short circuit test by shorting the low voltage winding. 71 IFL - The primary full load current. 72 7.3 74 Ret - The equivalent resistance, referred to primary side Xe1 The equivalent reactance, referred to primary side Ze1- The equivalent impedance, referred to primary side Vsc (Voltmeter reading) 7.6 Isc (Ammeter reading) 7.7 Psc (Wattmeter reading)
The full load readings on the voltmeter, ammeter and watt-meter for the short circuit test by shorting the low voltage winding. Vsc (Voltmeter reading)= 250 VISc, Ammeter reading)= 7.6 APsc, (Wattmeter reading)= 440 W is the answer.
In order to determine the full load readings on the voltmeter, ammeter and watt-meter for the short circuit test by shorting the low voltage winding, the given values should be utilized. The values of parameters given are: R₁ = 0.42, R₂ = 1.0, X₁ = 20, and X₂ = 0.50.
The Short circuit test is performed on the low-voltage (secondary) side of the transformer. Due to the short circuit, the secondary voltage drops to zero and hence the entire primary voltage appears across the impedance referred to as the primary. The full load readings on the voltmeter, ammeter and watt-meter for the short circuit test by shorting the low voltage winding can be calculated as follows:
Where Vsc= Voltmeter reading = 250
VIsc= Ammeter reading = 7.6
APsc= Wattmeter reading = 440
WZ= Impedance referred to primary side
= [tex]{{Z}_{1}}+{{Z}_{2}}[/tex]
= 0.42 + j20 + 1.0 + j0.5
= [tex]1.42 + j20.5[tex]I_{FL}[/tex]
=[tex]\frac{{{V}_{1}}}{\sqrt{3}{{Z}_{1}}}\,\,[/tex]
=[tex]\frac{500}{\sqrt{3}\left( 0.42+j20 \right)}[/tex][/tex]
= 7.06 A
The full load readings on the voltmeter, ammeter and watt-meter for the short circuit test by shorting the low voltage winding are as follows: 71 IFL - The primary full load current= 7.06 A72 7.3 74 Ret - The equivalent resistance, referred to as the primary side Xe1= R2= 1 Ω
The equivalent reactance, referred to as the primary side Ze1= X2= 0.5 Ω
The equivalent impedance, referred to the primary side Z = R + jX = 1 + j0.5= 1.118Ω
Vsc (Voltmeter reading)= 250 VISc (Ammeter reading)= 7.6 APsc (Wattmeter reading)= 440 W
know more about equivalent impedance,
https://brainly.com/question/31770436
#SPJ11
Determine the direction of the magnetic force in the following situations: (a) A negatively charged particle is moving north in a magnetic field which points up. (b) A positively charged particle is moving in the +x direction in a magnetic field that points in the −y direction. (c) A positively charged particle is stationary in a magnetic field that points in the +z direction. (d) A negatively charged particle is moving west in a magnetic field that points east. (e) A negatively charged particle is moving in the −z direction in a magnetic field that points in the −x direction. (f) A negatively charged particle is moving up in a magnetic field that points south.
The direction of the magnetic force can be determined using the right-hand rule for magnetic force.
According to this rule, if the thumb of the right hand points in the direction of the velocity of the charged particle, and the fingers point in the direction of the magnetic field, then the palm of the hand will indicate the direction of the magnetic force on the particle.
(a) For a negatively charged particle moving north in a magnetic field pointing up, the force would act to the west.(b) For a positively charged particle moving in the +x direction in a magnetic field pointing in the −y direction, the force would act in the +z direction.
(c) For a positively charged particle that is stationary in a magnetic field pointing in the +z direction, there would be no magnetic force since the particle is not in motion.(d) For a negatively charged particle moving west in a magnetic field pointing east, the force would act in the south direction.
(e) For a negatively charged particle moving in the −z direction in a magnetic field pointing in the −x direction, the force would act in the +y direction.(f) For a negatively charged particle moving up in a magnetic field pointing south, the force would act in the west direction.
Learn more about magnetic force here:
https://brainly.com/question/30532541
#SPJ11
A turbofan aircraft produces a noise with sound power of 1,000 W during full throttle at take-off. If you are standing on the tarmac 400 m from the plane, what sound level would you hear? What is the minimum safe distance from the propeller that is needed to ensure you don't experience a sound above the threshold of pain?
The sound level you hear is 100 dB and the minimum safe distance from the propeller is 1 meter (approximately).
The equation that is used to calculate sound intensity is given by
I = W/A,
where
W is the sound power
A is the area of the sphere
We can calculate the intensity of sound using the equation given above. Let's calculate the sound level you would hear using the formula
L = 10log(I/I₀),
where
L is the sound level
I₀ is the threshold of hearing
Here, we have to take
I₀ = 10⁻¹² W/m²
We know that the sound power of the turbofan aircraft is 1,000 W.
So, the intensity of sound produced by the turbofan aircraft is:
I = W/A
Therefore,
I = 1,000/4π × 400²
I = 0.049 W/m²
Using the equation
L = 10log(I/I₀),
we can calculate the sound level that you would hear:
L = 10log(I/I₀)
Therefore, L = 10log(0.049/10⁻¹²) = 100 dB(A)
The minimum safe distance from the propeller that is needed to ensure you don't experience a sound above the threshold of pain is 1 meter (approximately).
Learn more about sound:
https://brainly.com/question/1173066
#SPJ11
1. An car’s engine idles at 1200 rpm. Determine the
frequency in hertz. 2. What would be the frequency of a space-station
spinning at 120o per second?
The car engine idling at 1200 rpm has a frequency of 20 Hz. The space-station spinning at 120 degrees per second has a frequency of approximately 0.333 Hz.
To determine the frequency in hertz, we need to convert the rotations per minute (rpm) to rotations per second. We can use the following formula:
Frequency (in hertz) = RPM / 60
For the car engine idling at 1200 rpm:
Frequency = 1200 / 60 = 20 hertz
For the space-station spinning at 120 degrees per second, we need to convert the degrees to rotations before calculating the frequency. Since one complete rotation is equal to 360 degrees, we can use the following formula:
Frequency (in hertz) = Rotations per second = Degrees per second / 360
For the space-station spinning at 120 degrees per second:
Frequency = 120 / 360 = 1/3 hertz or approximately 0.333 hertz
Therefore, the frequency of the car engine idling at 1200 rpm is 20 hertz, while the frequency of the space-station spinning at 120 degrees per second is approximately 0.333 hertz.
To know more about rotations per minute,
https://brainly.com/question/927364
#SPJ11
How would you determine today’s activity,N1 of a source for which you have a calibration certificate with an original activity, N0 at a time interval, td, in the past?
By plugging in the appropriate values, you can calculate today's activity (N1) of the radioactive source. To determine today's activity (N1) of a radioactive source for which you have a calibration certificate with an original activity (N0) at a time interval (td) in the past, you can use the concept of radioactive decay and the decay constant.
The decay of a radioactive source follows an exponential decay law, which states that the activity of a radioactive sample decreases with time according to the equation:
N(t) = N0 * e^(-λt)
Where:
N(t) is the activity of the source at time t.
N0 is the original activity of the source.
λ is the decay constant.
t is the time elapsed.
The decay constant (λ) is related to the half-life (T½) of the radioactive material by the equation:
λ = ln(2) / T½
To determine today's activity (N1), you need to know the original activity (N0), the time interval (td), and the half-life of the radioactive material.
Here are the steps to calculate today's activity:
Determine the decay constant (λ) using the half-life (T½) of the radioactive material.
Calculate the time elapsed from the calibration date to today, which is td.
Use the formula N(t) = N0 * e^(-λt) to calculate N1, where N0 is the original activity and t is the time elapsed (td).
By plugging in the appropriate values, you can calculate today's activity (N1) of the radioactive source.
To know more about the radioactive source
brainly.com/question/12741761
#SPJ11
Light is reflected from the surface of a lake (n = 1.37). What is the angle of incidence for which the reflected light is 100% polarized? A) 37.9° B) 53.9°C) 34.30 D) 56.6°E) 36.10 26. An ultra-fast pulse lasers emits pulses of 13 fs.
The angle of incidence for which the reflected light is 100% polarized is approximately 56.6° i.e., the correct option is D) 56.6°.
To determine the angle of incidence for which the reflected light is 100% polarized, we need to use the principle of Brewster's angle.
Brewster's angle states that when light is incident on a surface at a certain angle, the reflected light becomes completely polarized, meaning it oscillates in one plane.
The formula for Brewster's angle is given by:
tan(θ_B) = n2/n1
where θ_B is the Brewster's angle, n1 is the refractive index of the medium from which the light is coming (in this case, air), and n2 is the refractive index of the medium to which the light is incident (in this case, the lake).
Given that the refractive index of air is approximately 1 (since it's close to a vacuum) and the refractive index of the lake is 1.37, we can substitute these values into the equation:
tan(θ_B) = 1.37/1
Taking the arctan of both sides, we find:
θ_B = arctan(1.37/1)
Using a calculator, we can evaluate this to find:
θ_B ≈ 56.6°
Therefore, the angle of incidence for which the reflected light is 100% polarized is approximately 56.6°.
The correct option in the given choices is D) 56.6°.
Learn more about angle of incidence here:
https://brainly.com/question/14221826
#SPJ11
A car initially traveling eastward turns north by traveling in a circular path at a uniform speed as shown in the figure below. The length of the arc ABC is 222 m, and the car completes the turn in 34.0 s.
An x y coordinate axis is shown. Point A is located at a negative value on the y-axis, and an arrow points from the point A to the right. A dotted line curves up and to the right in a quarter circle until it reaches point C on the positive x-axis. An arrow points directly upward from point C. Point B is on the dotted circle. A line drawn from the origin to point B makes an angle of 35.0° below the x-axis.
(a) Determine the car's speed.
m/s
(b) What is the magnitude and direction of the acceleration when the car is at point B?
magnitude m/s2
direction ° counterclockwise from the +x-axis
A car initially traveling eastward turns north in a circular path, covering an arc length of 222 m in 34.0 s. A line drawn from the origin to point B makes an angle of 35.0° below the x-axis. The speed of the car is 6.53 m/s and acceleration at B is [tex]0.336 m/s^2[/tex].
(a) To determine the car's speed, we can use the formula v = s/t, where v represents the velocity (speed), s represents the distance traveled, and t represents the time taken. In this case, the distance traveled is the length of the arc ABC, which is given as 222 m, and the time taken is given as 34.0 s. Substituting these values into the formula, we have:
v = [tex]\frac{ 222 }{34}[/tex] = [tex]6.53 m/s[/tex]
Therefore, the car's speed is [tex]6.53 m/s.[/tex]
(b) To find the magnitude of the acceleration at point B, we can use the formula a = [tex]v^2 / r[/tex], where a represents acceleration, v represents velocity, and r represents the radius of the circular path. From the given figure, we can see that the radius of the circular path is the distance from the origin to point B.
Using trigonometry, we can find the radius as follows:
r = BC = AB * [tex]sin(35°) = 222 m * sin(35°)[/tex] ≈ [tex]126.83 m[/tex]
Substituting the values into the formula, we have:
a = [tex](6.53 m/s)^2[/tex] / [tex]126.83 m[/tex] ≈ [tex]0.336 m/s^2[/tex]
Therefore, the magnitude of the acceleration at point B is approximately [tex]0.336 m/s^2[/tex].
(c) To determine the direction of the acceleration, we need to consider the circular motion. At point B, the acceleration is directed towards the center of the circle. Since the car is turning from east to north, the direction of the acceleration would be counterclockwise. The angle between the acceleration and the +x-axis can be determined as follows:
Angle = [tex]90° - 35° = 55°[/tex]
Therefore, the direction of the acceleration at point B is approximately 55° counterclockwise from the +x-axis.
Learn more about acceleration here:
https://brainly.com/question/30660316
#SPJ11
Transverse Wave: A wave traveling along a string is described by y(x, t) = (2.0 mm) sin[(10rad/m)x - (20rad/s)t + 1.0rad] travels along a string. (a) What is the amplitude of this wave? (b) What is the period of this wave? (c) What is the velocity of this traveling wave? (d) What is the transverse velocity (of string element) at x = 2.0 mm and t = 2 msec? (e) How much time does any given point on the string take to move between displacements y = + 1.0 mm and y = 1.0 mm?
(a) The amplitude of the wave is 2.0 mm, (b) the period of the wave is 0.1 s, (c) the velocity of the traveling wave is 2 m/s,
(d) the transverse velocity at x = 2.0 mm and t = 2 ms is -40 mm/s,
(e) time taken for a given point on the string to move between displacements of y = +1.0 mm and y = -1.0 mm is 0.025 s.
(a) The amplitude of a wave represents the maximum displacement from the equilibrium position. In this case, the amplitude is given as 2.0 mm.
(b) The period of a wave is the time taken for one complete cycle.The period (T) can be calculated as T = 2π/ω, which gives a value of 0.1 s.
(c) It is determined by the ratio of the angular frequency to the wave number (v = ω/k). In this case, the velocity of the wave is 2 m/s.
(d) The transverse velocity of a string element. Evaluating this derivative at x = 2.0 mm and t = 2 ms gives a transverse velocity of -40 mm/s.
(e) The time taken for a given point on the string to move between displacements sine function to complete one full cycle between these two points. Therefore, the total time is 0.025 s.
Learn more about amplitude here;
https://brainly.com/question/3613222
#SPJ11
A monochromatic source emits a 6.3 mW beam of light of wavelength 600 nm. 1. Calculate the energy of a photon in the beam in eV. 2. Calculate the number of photons emitted by the source in 10 minutes. The beam is now incident on the surface of a metal. The most energetic electron ejected from the metal has an energy of 0.55 eV. 3. Calculate the work function of the metal.
The power emitted by a monochromatic source is 6.3 m Wavelength of light emitted by the source is 600 nm.
1. Energy of photon, E = hc/λ
where, h = Planck's constant = 6.63 × 10⁻³⁴ Js, c = Speed of light = 3 × 10⁸ m/s, λ = wavelength of light= 600 nm = 600 × 10⁻⁹ m
Substitute the values, E = (6.63 × 10⁻³⁴ J.s × 3 × 10⁸ m/s)/(600 × 10⁻⁹ m) = 3.31 × 10⁻¹⁹ J1 eV = 1.6 × 10⁻¹⁹ J
Hence, Energy of photon in eV, E = (3.31 × 10⁻¹⁹ J)/ (1.6 × 10⁻¹⁹ J/eV) = 2.07 eV (approx.)
2. The power is given by,
P = Energy/Time Energy, E = P × Time Where P = 6.3 mW = 6.3 × 10⁻³ W, Time = 10 minutes = 10 × 60 seconds = 600 seconds
E = (6.3 × 10⁻³ W) × (600 s) = 3.78 J
Number of photons emitted, n = E/Energy of each photon = E/E1 = 3.78 J/3.31 × 10⁻¹⁹ J/photon ≈ 1.14 × 10²¹ photons
3. The work function (ϕ) of a metal is the minimum energy required to eject an electron from the metal surface. It is given by the relation, K max = hv - ϕ where Kmax = Maximum kinetic energy of the ejected electron, v = Frequency of the incident radiation (v = c/λ), and h = Planck's constant.
Using Kmax = 0.55 eV = 0.55 × 1.6 × 10⁻¹⁹ J, h = 6.63 × 10⁻³⁴ Js, λ = 600 nm = 600 × 10⁻⁹ m,v = c/λ = 3 × 10⁸ m/s ÷ 600 × 10⁻⁹ m = 5 × 10¹⁴ s⁻¹.
Substituting all the values in the above formula,ϕ = hv - Kmaxϕ = (6.63 × 10⁻³⁴ Js × 5 × 10¹⁴ s⁻¹) - (0.55 × 1.6 × 10⁻¹⁹ J)ϕ ≈ 4.3 × 10⁻¹⁹ J
Therefore, the work function of the metal is approximately equal to 4.3 × 10⁻¹⁹ J.
Explore another question on work function of metals: https://brainly.com/question/19427469
#SPJ11
Consider an electric field perpendicular to a work bench. When a small charged object of mass 4.00 g and charge -19.5 μC is carefully placed in the field, the object is in static equilibrium. What are the magnitude and direction of the electric field? (Give the magnitude in N/C.) magnitude N/C direction
The magnitude of the electric field is 5.12 × 10^6 N/C, and it is directed upwards.
In order for the charged object to be in static equilibrium, the electric force acting on it must balance the gravitational force. The electric force experienced by the object can be calculated using the equation F = qE, where F is the force, q is the charge of the object, and E is the electric field.
Given that the mass of the object is 4.00 g (or 0.004 kg) and the charge is -19.5 μC (or -1.95 × [tex]10^{-8}[/tex] C), we can calculate the gravitational force acting on the object using the equation F_gravity = mg, where g is the acceleration due to gravity (approximately 9.8 [tex]m/s^2[/tex]).
Since the object is in equilibrium, the electric force and the gravitational force are equal in magnitude but opposite in direction. Therefore, we have F = F_gravity. Substituting the values, we get qE = mg, which can be rearranged to solve for the electric field E.
Plugging in the known values, we have (-1.95 × [tex]10^{-8}[/tex] C)E = (0.004 kg)(9.8 [tex]m/s^2[/tex]). Solving for E gives us E = (0.004 kg)(9.8 [tex]m/s^2[/tex])/(-1.95 × [tex]10^-8[/tex] C) ≈ 5.12 × [tex]10^6[/tex] N/C.
The negative charge on the object indicates that the direction of the electric field is directed upwards, opposite to the direction of the gravitational force.
Learn more about electric field here ;
https://brainly.com/question/30544719
#SPJ11
Find solutions for your homework
science
earth sciences
earth sciences questions and answers
the ochre sea star (pisaster ochraceus), has radial symmetry with a flat, star shaped body with five spokes radiating from its center place. it is in what class? gastropoda polyplacophora
Question: The Ochre Sea Star (Pisaster Ochraceus), Has Radial Symmetry With A Flat, Star Shaped Body With Five Spokes Radiating From Its Center Place. It Is In What Class? Gastropoda Polyplacophora
The ochre sea star (Pisaster ochraceus), has radial symmetry with a flat, star shaped body with five spokes radiating from its center place. It is in what class?
Gastropoda
Polyplacophora
Asteroidea
Anthozoa
Echinoidea
The ochre sea star (Pisaster ochraceus) belongs to the Asteroidea class of the phylum Echinodermata. It is characterized by its radial symmetry and has a flat, star-shaped body with five spokes radiating from its center.
Asteroidea is a class within the phylum Echinodermata, which includes starfish or sea stars. Animals in the Asteroidea class have five or more arms that radiate from a central disk. They can be found in various marine habitats across the world's oceans, ranging from the deep sea to intertidal zones.
Apart from Asteroidea, the phylum Echinodermata also includes other classes such as Crinoidea (sea lilies and feather stars), Echinoidea (sea urchins and sand dollars), Holothuroidea (sea cucumbers), and Ophiuroidea (brittle stars and basket stars). Each class within the phylum exhibits unique characteristics and adaptations for their specific habitats and lifestyles.
Learn more about ochre sea star
https://brainly.com/question/30093147
#SPJ11
A 6 pole induction motor has the ratings: U₁ = 400 V, n = 970 rpm, ƒ№ = 50 Hz, the stator windings are connected as Y, if the parameters are: r₁ = 2.08 №, r₂ = 1.53 N, x₁ = 3.12 №, x₂ = 4.25 N. Find out: (a) rated slip; (b) maximum torque; (c) overload ability Ami (d) the slip when the maximum torque occurs.
The maximum torque is 1082 Nm, which is achieved at 6.5% slip. The overload capacity is 227%. is the answer.
A 6-pole induction motor has the following specifications: U1 = 400 V, n = 970 rpm, f1 = 50 Hz, and the stator windings are connected in Y. Given the parameters r1 = 2.08 Ω, r2 = 1.53 Ω, x1 = 3.12 Ω, and x2 = 4.25 Ω, we are required to find out the following: rated slip maximum torque overload capacity
The formula for slip (s) is given by: s = (ns - nr) / ns where ns = synchronous speed
nr = rotor speed
Using the given values, we get: s = (ns - nr) / ns= (120 * f1 - nr) / (120 * f1)= (120 * 50 - 970) / (120 * 50)= 0.035 or 3.5%
This is the rated slip.
Maximum torque is achieved at the slip (s) that is 0.1 to 0.15 less than the rated slip (sr).
Hence, maximum torque slip (sm) can be calculated as follows: sm = sr - 0.1sr = rated slip sm = sr - 0.1= 0.035 - 0.1= -0.065or 6.5% (Approx)
The maximum torque is given by: T max = 3V12 / (2πf1) * (r2 / s) * [(s * (r2 / s) + x2) / ((r1 + r2 / s)2 + (x1 + x2)2) + s * (r2 / s) / ((r2 / s)2 + x2)2] where,V1 = 400 Vr1 = 2.08 Ωr2 = 1.53 Ωx1 = 3.12 Ωx2 = 4.25 Ωf1 = 50 Hz s = 0.035 (Rated Slip)
Putting all the values in the formula, we get: T max = 3 * 4002 / (2π * 50) * (1.53 / 0.035) * [(0.035 * (1.53 / 0.035) + 4.25) / ((2.08 + 1.53 / 0.035)2 + (3.12 + 4.25)2) + 0.035 * (1.53 / 0.035) / ((1.53 / 0.035)2 + 4.25)2]= 1082 Nm
Overload capacity is the percentage of the maximum torque that the motor can carry continuously.
This can be calculated using the following formula: Am = Tmax / Tn where T max = 1082 Nm
Tn = (2 * π * f1 * n) / 60 (Torque at rated speed)Putting all the values, we get: Am = Tmax / Tn= 1082 / [(2 * π * 50 * 970) / 60]= 2.27 or 227%
Therefore, the rated slip is 3.5%.
The maximum torque is 1082 Nm, which is achieved at 6.5% slip. The overload capacity is 227%.
know more about maximum torque
https://brainly.com/question/30337233
#SPJ11