The unit rate at which the bakery makes donuts is 2 donuts per minute.
The slope of the line would also be 2 since the number of donuts made is directly proportional to the time elapsed. This means that for every minute that passes, 2 donuts are made.
To find the unit rate, we divide the total number of donuts made (30) by the time it takes to make them (15 minutes).
Unit rate = 30 donuts ÷ 15 minutes = 2 donuts per minute
To find the slope of the line, we use the formula:
slope = rise ÷ run
In this case, the "rise" is the number of donuts made and the "run" is the time elapsed. Therefore, the slope is:
slope = 30 donuts ÷ 15 minutes = 2 donuts per minute.
Learn more about Slope of the Line:
https://brainly.com/question/16949303
#SPJ4
You have$ 11.50 and you need ti make copies of a flyer at a store that changes $0.30 per copy
Answer:
56
Step-by-step explanation:
Answer:
56
Step-by-step explanation:
the answer is 56
which shape has at least one circular face and no vertices
Answer:
cylinder
Step-by-step explanation:
A cylinder has 2 circular faces and no vertices.
if ratios x:y=3:4 and y:z=1:4
find x:y:z
Using the idea of comparable ratio, we may determine x:y:z to be 3:16:1, given as x:y=3:4 and y:z=1:4.
A ratio is what?When the second number in the ordered pair, b, is not equal to 0, the ratio is expressed as a/b. An equation wherein two ratios are made equal is known as a percentage. As an illustration, you could express the ratio as 1: 3 if there is 1 guy and 3 girls (for every one boy there are 3 girls)
Given that y is present in both ratios, we may begin by determining its value:
y = (4/1) * (y/z), multiplied by 4, which is the reciprocal of 1/4.
y = 4(y/z)
y/z = 1/4
z/y = 4/1
We can now find x by using the value of y:
x/y = 3/4 (given)
x = (3/4) * y x = (3/4) * 4(z/y) (simultaneously inserting y/z)
x = 3z
As a result, x:y:z = 3z: 4 is the ratio of x:y:z.
y : z\s= 3 : 4(4) : 1\s= 3 : 16 : 1
So, x:y:z = 3:16:1 is the solution.
To know more about ratio visit:
https://brainly.com/question/29467965
#SPJ1
The circumference of circle A is 21.99 cm. The circumference of circle B is 51.52 cm. What is the difference between the lengths of the radii to the nearest hundredth? Show all your work and circle your answer.
The difference between the lengths of the radii is approximately 4.70 cm.
What is circle ?
A circle is a two-dimensional geometric shape that is defined as the set of all points in a plane that are at a given distance (called the radius) from a given point (called the center). It can also be defined as the locus of all points that are equidistant from a given point. A circle is a closed curve and its circumference is the distance around the circle.
We know that the formula for the circumference of a circle is:
C = 2πr
Where C is the circumference and r is the radius.
For circle A, we have:
21.99 = 2πr
Dividing both sides by 2π, we get:
r = 3.5
For circle B, we have:
51.52 = 2πr
Dividing both sides by 2π, we get:
r = 8.2
The difference between the radii is:
8.2 - 3.5 = 4.7
Rounding to the nearest hundredth, we get:
4.7 ≈ 4.70
Therefore, the difference between the lengths of the radii is approximately 4.70 cm.
To know more about circle visit:
https://brainly.com/question/24375372
#SPJ1
What are the steps to express 0.15 as a fraction in simplest form ? Order the following from 1-5
Answer:
0.15 expressed as a fraction in its simplest form is 3/20.
Step-by-step explanation:
To express a terminating decimal as a fraction:
Step 1Write the decimal as a fraction by dividing it by 1:
[tex]\boxed{\dfrac{0.15}{1}}[/tex]
Step 2Multiply the numerator and denominator by 10 for every number after the decimal point.
As there are two numbers after the decimal point, multiply the numerator and denominator by 100:
[tex]\boxed{\dfrac{0.15 \times 100}{1 \times 100}=\dfrac{15}{100}}[/tex]
Step 3Find the highest common factor (HCF) of the numerator and denominator.
Factors of 15: 1, 3, 5 and 15.Factors of 100: 1, 2, 4, 5, 10, 20, 25, 50 and 100.Therefore, the HCF of 15 and 100 is 5.
Divide the numerator and denominator by the HCF to reduce the fraction to its simplest form:
[tex]\boxed{\dfrac{15 \div 5}{100 \div 5}=\dfrac{3}{20}}[/tex]
Conclusion0.15 expressed as a fraction in its simplest form is 3/20.
Answer:
See below, please.
Step-by-step explanation:
Write 0.15 as the fraction 15/100.Simplify the fraction by dividing both the numerator and denominator by their greatest common factor (GCF). In this case, the GCF of 15 and 100 is 5.Divide both 15 and 100 by 5. This gives 3/20.The resulting fraction 3/20 is in its simplest form, as 3 and 20 have no common factors other than 1.The final answer is 3/20.So the order would be:Write 0.15 as the fraction 15/100.Simplify the fraction by dividing both the numerator and denominator by their greatest common factor (GCF). In this case, the GCF of 15 and 100 is 5.Divide both 15 and 100 by 5. This gives 3/20.The resulting fraction 3/20 is in its simplest form, as 3 and 20 have no common factors other than 1.The final answer is 3/20.you roll two 6-sided dice. what is the probability of either die rolling the value 3 or both dice rolling even values?
The probability of either die rolling the value 3 or both dice rolling even values is 5/9.
The probability of rolling a 3 on a single die is 1/6, so the probability of either die rolling a 3 is 2/6 or 1/3 (since there are two dice).
The probability of rolling an even number on a single die is 1/2 (since there are three even numbers and three odd numbers on a 6-sided die). The probability of rolling even values on both dice is the product of the probability of each die rolling an even value, which is (1/2) x (1/2) = 1/4.
To find the probability of either die rolling a 3 or both dice rolling even values, we need to subtract the probability of rolling both a 3 and an even value (since we would be double-counting this case). The only way to roll both a 3 and an even value is to roll two 6's, so the probability of this happening is 1/36.
Therefore, the probability of either die rolling 3 or both dice rolling even values is:
P(either die rolling 3 or both dice rolling even) = P(die 1 = 3 or die 2 = 3 or both dice even) - P(both dice = 6)
= (1/3 + 1/3) + (1/4 - 1/36)
= 5/9
Hence, the probability is 5/9.
To know more about probability refer here:
https://brainly.com/question/14938816#
#SPJ11
Write the equation of the circle with its center at (8, 2)
that passes through (17, 14)
in standard form
The equation of the circle with center at (8, 2) that passes through (17, 14) in standard form is (x - 8)² + (y - 2)² = 225
In your problem, we are given that the center of the circle is located at (8, 2) and that the circle passes through the point (17, 14). To find the equation of this circle, we need to use the standard form of the equation of a circle, which is:
(x - h)² + (y - k)² = r²
where (h, k) is the center of the circle and r is the radius of the circle.
To find the radius of the circle, we can use the distance formula between the center of the circle and the point on the circle that is given to us. The distance formula is:
d = √((x₂ - x₁)² + (y₂ - y₁)²)
where (x₁, y₁) is the center of the circle and (x₂, y₂) is the point on the circle that is given to us.
Plugging in the values we have, we get:
d = √((17 - 8)² + (14 - 2)²) = √(81 + 144) = √(225) = 15
So the radius of the circle is 15.
Now we can plug in the values we have into the standard form of the equation of a circle:
(x - 8)² + (y - 2)² = 15²
which simplifies to:
(x - 8)² + (y - 2)² = 225
To know more about equations here
https://brainly.com/question/10413253
#SPJ4
a random variable x is uniformly distributed between 45 and 150. what is the probability of xbegin mathsize 12px style less or equal than end style60?
The probability of x being exactly 48 when it is uniformly distributed between 45 and 150 is 1/105
Since x is uniformly distributed between 45 and 150, the probability of x taking any particular value in this range is the same. Let this probability be denoted by P(x).
To find P(x = 48), we need to first check if 48 lies within the range of values that x can take. In this case, 48 lies within the range of 45 and 150, so it is a possible value for x.
Since the distribution is uniform, the probability of x taking any particular value between 45 and 150 is given by
P(x) = 1 / (150 - 45) = 1 / 105
Therefore, the probability of x being exactly 48 is
P(x = 48) = 1 / 105
Learn more about probability here
brainly.com/question/28348710
#SPJ4
The given question is incomplete, the complete question is:
A random variable x is uniformly distributed between 45 and 150. what is the probability of x = 48?
at an after-school program there are 27 boys and 32 girls. what is the ratio of boys to total kids written in 3 ways?
The ratio of boys to total kids can be expressed in three different ways fraction, decimal, and percent which are 27:59, 0.4576 and 45.76% respectively.
First, let's find the total number of kids in the program. The total number of kids in the program is the sum of boys and girls. Total kids = boys + girls = 27 + 32 = 59. Now that we have the total number of kids, we can find the ratio of boys to total kids in three different ways. 1. Fraction: The ratio of boys to total kids can be expressed as a fraction, where the numerator is the number of boys and the denominator is the total number of kids. Boys: Total kids = 27:59 This fraction cannot be simplified.
2. Decimal: The ratio of boys to total kids can also be expressed as a decimal. To find the decimal, divide the number of boys by the total number of kids. Boys/Total kids = 27/59 = 0.4576 (rounded to four decimal places). 3. Percent: The ratio of boys to total kids can also be expressed as a percentage. To find the percentage, multiply the decimal by 100. Boys/Total kids × 100 = 0.4576 × 100 = 45.76%. Therefore, the ratio of boys to total kids can be expressed as a fraction, decimal, and percent as shown above.
To know more about ratio and percentage click here:
https://brainly.com/question/30033832
#SPJ11
Two important properties of eigenvalues Recall that trace of a square matrix is the sum of the entries in main diagonal Let [ 1 -1 1] C = [-1 2 0] [ 0 -1 2] and [ 1 2 1] A = [ 6 -1 0]
[-1 -2 -1] Enter A and C in MATLAB Find trace of C and A by typing : trace(A) and trace(C) Find eigenvalues of A and C Explain Do you any relation between eigenvalues and trace of of a see matrix? Find det (A) and det(C) Explain Do you see any relation between eigenvalues and determinant of a matrix?
The product of the eigenvalues is equal to the determinant of the matrix. In other words, if λ1, λ2, ..., λn are the eigenvalues of a square matrix A, then det(A) = λ1 * λ2 * ... * λn. This relationship also holds true for both matrices A and C.
To enter matrices A and C in MATLAB, we can use the following commands:
A = [6, -1, 0; -1, -2, -1; 0, -1, 2];
C = [1, -1, 1; -1, 2, 0; 0, -1, 2];
To find the trace of A and C, we can use the following commands:
trace_A = trace(A);
trace_C = trace(C);
The trace of matrix A is 6 - 2 + 2 = 6, and the trace of matrix C is 1 + 2 + 2 = 5.
To find the eigenvalues of A and C, we can use the eig() function in MATLAB:
[eig_vec_A, eig_val_A] = eig(A);
[eig_vec_C, eig_val_C] = eig(C);
The eigenvalues of matrix A are -1, 1, and 6, and the eigenvalues of matrix C are 1, 1, and 2.
There is a relationship between the trace of a square matrix and its eigenvalues. Specifically, the sum of the eigenvalues is equal to the trace of the matrix. In other words, if λ1, λ2, ..., λn are the eigenvalues of a square matrix A, then trace(A) = λ1 + λ2 + ... + λn. This relationship holds true for both matrices A and C.
To find the determinant of A and C, we can use the following commands:
det_A = det(A);
det_C = det(C);
The determinant of matrix A is 12, and the determinant of matrix C is 5.
There is also a relationship between the eigenvalues and the determinant of a square matrix. Specifically, the product of the eigenvalues is equal to the determinant of the matrix. In other words, if λ1, λ2, ..., λn are the eigenvalues of a square matrix A, then det(A) = λ1 * λ2 * ... * λn. This relationship also holds true for both matrices A and C.
To learn more about eigenvalues visit: https://brainly.com/question/29749542
#SPJ11
A truck whose bad is 2.5 m long 1.5 m wide and 1 m high is delivering sand for a sand sculpture competition about how many trips must the truck make to deliver 7 m3 of the sand
The truck must make 2 trips tο deIiver 7 m³ οf sand.
What is VοIume?VοIume is the amοunt οf space οccupied by an οbject οr substance. It is typicaIIy measured in cubic units such as cubic meters, cubic centimetres, οr cubic feet.
Tο caIcuIate the number οf trips the truck must make tο deIiver 7 m³ οf sand, we need tο determine hοw much sand the truck can carry per trip.
The vοIume οf the truck bed can be caIcuIated as fοIIοws:
VοIume οf the truck bed = Iength x width x height
= 2.5 m x 1.5 m x 1 m
= 3.75 m3
Therefοre, the truck can carry 3.75 m³ οf sand per trip.
Tο deIiver 7 m³ οf sand, we divide the tοtaI amοunt οf sand by the amοunt οf sand the truck can carry per trip:
Number οf trips = tοtaI amοunt οf sand / amοunt οf sand per trip
= 7 m³ / 3.75 m³ per trip
= 1.87
Since we cannοt make a partiaI trip, we must rοund up tο the nearest whοIe number.
Therefοre, the truck must make 2 trips tο deIiver 7 m³ οf sand.
To learn more about Volume from the given link
https://brainly.com/question/463363
#SPJ1
SOMEONE PLS HELP MY LITTLE SISTER ON THIS QUESTION
Answer: 56448² ft
Step-by-step explanation:
7 x 4 x 18 x 4 x 7 x 4 = 56448 and square it to get 56448² and then add the unit to get 56448 ft² :)
suppose that a 17 ft ladder is sliding down a wall at a rate of 6 ft/sec. at what rate is the bottom of the ladder moving when the top is 8 ft from the ground?
The bottom of the ladder is moving at a rate of 1.333 ft/sec when the top is 8 ft from the ground
The bottom of the ladder is moving at a rate of 6 ft/sec when the top is 8 ft from the ground. This can be found by using the equation v = d/t, where v is the velocity, d is the distance, and t is the time. The distance is 8 feet (from the top of the ladder to the ground) and the time is 1/6 seconds (since the ladder is sliding down at a rate of 6 ft/sec). Therefore, the velocity of the bottom of the ladder when the top is 8 ft from the ground is 8/1/6 = 8/6 = 4/3 = 1.333 ft/sec.
To understand this concept more clearly, imagine a ball rolling along the ground. Its velocity is constant until it hits a slope and begins to move down the slope. At this point, its velocity increases as it moves further down the slope, and its velocity is higher when it is further down the slope.
This is the same concept as the ladder sliding down the wall; the bottom of the ladder is moving faster than the top, so the velocity of the bottom of the ladder increases as the top of the ladder gets closer to the ground.
In conclusion, the bottom of the ladder is moving at a rate of 1.333 ft/sec when the top is 8 ft from the ground. This can be found using the equation v = d/t, where v is the velocity, d is the distance, and t is the time. The distance is 8 feet and the time is 1/6 seconds since the ladder is sliding down at a rate of 6 ft/sec.
See more about velocity at: https://brainly.com/question/25749514
#SPJ11
Simplify. 2x + 6x^2 - 10 + 4x^2 - 3X + (-6) =
Answer:
[tex]\boxed{\mathtt{10x^{2}-x-16}}[/tex]
Step-by-step explanation:
[tex]\textsf{For this problem, we are asked to simplify the given expression.}[/tex]
[tex]\textsf{Consider noting that this expression has like terms, meaning we can combine them.}[/tex]
[tex]\large\underline{\textsf{What are Like Terms?}}[/tex]
[tex]\textsf{Like terms are 2 or more terms that share similarity. They aren't different in a major way.}[/tex]
[tex]\textsf{Like terms are terms with the same type of number, variable, and or exponent.}[/tex]
[tex]\large\underline{\textsf{Combine Like Terms:}}[/tex]
[tex]\mathtt{2x+6x^{2}-10+4x^{2}-3x-6}[/tex]
[tex]\boxed{\mathtt{10x^{2}-x-16}}[/tex]
The volume of a cube is V = s³, where s is the length of one edge of the cube.
What is the edge length s for each cube?
Drag the answer into the box to match each description.
Answer: s = ∛125 in^3
Step-by-step explanation:
To find the edge length "s" of a cube with volume "V", we use the formula:
s = ∛V
For a cube with a volume of 125 cubic inches, we can find the edge length as:
s = ∛125
s = 5
So the edge length of a cube with a volume of 125 cubic inches is 5 inches.
please i need help, i’ve wasted like six papers trying to get this one right
Answer:5
Step-by-step explanation:
angle h and k are equal (because alternate exterior angles are equal)
2x+7=5x-8
8+7=5x-2x
15=3x
15/3=x
5=x
h=2x+7=2*5+7=17degrees
answer question please but DO NOT ROUND IT . 1 / 3*5 + 2
[tex]=\frac{1}{15} +2\\[/tex]
⇒We can only add the numbers if they have the same denominator, to do so we can first convert 2 into a fraction
[tex]=\frac{1}{15} +\frac{2(15)}{1(15)} \\=\frac{1}{15} +\frac{30}{15} \\=\frac{31}{15} \\[/tex]
how many distinct sequences of letters can you make if each sequence is ten letters long and contains the subsequence die.
The number of distinct sequences of letters is 8 × 26⁷.
How many distinct sequences of letters can you make if each sequence is ten letters long and contains the subsequence die?
We have to find the number of distinct sequences of letters that can be made. Here, the word 'die' can occur in any position of the ten-letter sequence. Therefore, we have to find the number of distinct sequences of seven letters that can be formed, which are not related to the word 'die'. The number of distinct sequences of seven letters that can be formed with no restrictions is:
26 × 26 × 26 × 26 × 26 × 26 × 26 = 26⁷
The word 'die' has three letters, and it can be placed in any of the eight positions of the seven-letter sequence (that is not related to the word 'die'). We have a total of 8 possibilities to choose where to put the word 'die'.Thus, the number of distinct sequences of letters is:
8 × 26⁷ (or) 703, 483, 260, 800.
The number of distinct sequences of letters is 8 × 26⁷.
To learn more about distinct sequences refer :
https://brainly.com/question/14575469
#SPJ11
even a process that is functioning as it should will not yield output that conforms exactly to a standard. why not? multiple choice question. nonrandom variation natural variation measurement error standards change
Even a process that is functioning as it should will not yield output that conforms exactly to a standard because of natural variation.
The natural variation is the variability in the output of a system that is caused by factors that are not controlled.This type of variation is also known as common cause variation.
The output of the system is changed by natural variation in such a way that it deviates from a fixed standard. Despite this, natural variation is usually present in any system, and it cannot be entirely eliminated.
There will always be some variation, and it is vital to understand how much of it is acceptable. The output of the system may be brought back into conformity with the standard by removing the cause of special cause variation.
Measurement errors can be caused by a variety of factors, including incorrect equipment calibration, user error, or environmental factors.
These errors may be distinguished from natural variation and special cause variation because they are caused by the measurement process rather than the system itself.
For similar question on functioning.
https://brainly.com/question/24748644
#SPJ11
Can you answer this please with workings out
Answer:
a) 640 ml
b) 40 ml
Step-by-step explanation:
The ratio of lime to lemonade for the fizzy drink is 5 : 3 or as a fraction that would be
[tex]\dfrac{\text{Lime juice}}{\text{Lemonade}}= \dfrac{5}{3}[/tex]
[tex]\text{Therefore the ratio of lemonade to lime }\\\\ = \text{reciprocal of $ \dfrac{5}{3} $} }\\\\= \dfrac{3}{5}[/tex]
Part a)
For all 400 ml of lime juice we would need
[tex]\dfrac{3}{5} \times 400 \;ml = 3 \times 80 = 240 \;ml[/tex]
Total amount of fizzy drink that can be maade
= amount of lime juice + amount of lemonade
= 400 + 240
= 640 ml
This is the answer to Part a)
Part b)
If Gianni has only 280 ml and is using all 400 ml of lime juice then the amount of lemonade used as calculated in part 1) is 240ml
That means the amount of lemonade left over = 280 - 240 = 40 ml
how many ways can a person toss a coin 15 15 times so that the number of tails is between 4 4 and 11 11 inclusive?
The number of ways a person can toss a coin 15 times so that the number of tails is between 4 and 11 inclusive is the product of the total number of ways and the sum of probabilities for k=4 to k=11 inclusive.
Binomial distribution refers to the issue of tossing a coin 15 times and getting a specific amount of tails. The following gives the binomial distribution formula:
[tex]P(X=k) = C(n,k) (n,k) * p^k * (1-p)^(n-k) (n-k)[/tex]
Where P(X=k) denotes the likelihood that there will be k tails in n tosses, p is the likelihood that there will be one tail in a single toss, and C(n,k) denotes the number of combinations of n objects that will be picked up k at a time.
The total of probability for k=4 to k=11 inclusive must be calculated in order to find the solution. This is,
P (4), P (5), P (6), P (7), P (8), P (9), P (10) and P (11)
We can figure out and add up each of these probability using the technique above. As an alternative, we can compute the probabilities using a statistical software programme or a binomial probability table.
A person can flip a coin 15 times in a total of 32,768 different ways. By calculating the total number of ways by the sum of probabilities for k=4 to k=11 inclusive, one may get the number of ways that the number of tails is between 4 and 11 inclusive.
Learn more about coin here:
https://brainly.com/question/8585991
#SPJ4
10 points if someone gets it right
Patricia jumped 4 times every 14 hours. At that rate, how many would she jump in 35 hours?
Answer:10
Step-by-step explanation: 14/4= 3.5, 35/3.5=10
What is the solution to the equation 2y+4=12?
Answer:
y=4
Step-by-step explanation:
2y+4=12
2y=8
y=4
answer: y=4
Answer:
y=4
Step-by-step explanation:
2y+4=12
2y=8
y=4
what happens to the variability of the sampling distribution of the mean as the number of observations units increases?
Larger sample sizes typically result in more precise population mean estimates with lower sampling variability. Thus, when calculating population metrics like the mean, it is frequently preferable to utilize larger sample numbers.
The variability of the sampling distribution of the mean reduces with an increase in the number of observation units. The central limit theorem refers to this.
According to the central limit theorem, the sampling distribution of the mean gets more normal as the sample size grows, and its standard deviation (i.e., the standard error of the mean) drops. Particularly, the square root of the sample size has an inverse relationship with the standard error of the mean.
Learn more about mean here
https://brainly.com/question/15323584
#SPJ4
If the measur of BEC is (2x3) and x is 30 which expression could represent the measure of AED
The expression that equals ∠BEC is 3x - 27, and the answer is B.
First, we find the measure of ∠BEC using the given information and the value of x. We get
2x + 3 = 63, which simplifies to x = 30.Then, we use the fact that ∠AED is vertically opposite to ∠BEC, so ∠AED = ∠BEC = 63 degrees.
Finally, we need to find the expression among the given choices that equals 63 when x = 30.
Option A is too large, option C is too large, and option D is too small. Option B gives us
3x - 27 = 3(30) - 27 = 63which matches the measure of ∠BEC. Therefore, the answer is B.
Learn more about Angles:
https://brainly.com/question/25716982
#SPJ4
Complete Question:
If the measure of BEC is (2x+3) and x=30, which expression could represent the measure of AED?
Given m = 2/3 and the point (-5, 5), which of the following is the point-slope form of the equation?
Answer: y -5
Step-by-step explanation:
Write the equation of a line that is parallel to the line x-3y=15 that go through the point (-9,8)
Answer:
eqn of line : x-3y=15
slope1=m= -coefficient of x/coefficient of y=1/3
As lines are parallel slope must be equal.
slope3=m'=1/3
passing points of second line =(0,7)
eqn of line = (y-y')=m(x-x')
=(y-7)=1/3(x-0)
=y-7=1/3x
=1/3x-y+7=0
=x-3y+21=0
Step-by-step explanation:
Wright a function (eqaution) that can be used to fined y, the total cost, dollars ,of buying x shirts from the local stare
The equation will be :20 + 8.95 × 10 = $109.50
Here the total cost is $109.50.
Total cost refers to the total cost of production, which includes the fixed and variable parts of the cost. In economics, total cost is described as the cost required to produce a product. The total cost consists of two parts and they are: Fixed costs: These are the costs that do not change.
According to the Question:
C = 20 + 8.95× t
This can be read as : The total cost (C) will be $20 (setup fee) plus $8.95 for each t-shirt ordered (t).
The equation will be:
10 shorts would be 20 + 8.95*10, or $109.50.
Complete Question:
A t-shirt company charges a $20.00 set-up fee plus $8.95 for each t-shirt that is screen-printed with a school’s logo. Write a function that can be used to find the total cost, C, for purchasing and screen printing, t, number of t-shirts.
Learn more about Equation:
https://brainly.com/question/29538993
#SPJ4
The equation h=t2−10t+25
represents the path of an eagle as it descends to the ground only to ascend back into the sky. If h
represents the height, in feet, of the eagle t
seconds after beginning its descent, which graph best represents the equation, where 0≤t≤10
Therefore , the solution of the given problem of equation comes out to be the parabola expands upwards, with the vertex being a minimum point.
Equation : What is it?Complex algorithms frequently employ variable words to demonstrate consistency between two conflicting assertions. Equations are academic expressions that are used to demonstrate the equality of different academic figures. In this instance, normalization results in b + 7 rather than a singular formula that divides 12 into two components along with is able to be utilized to evaluate data obtained from y + 7.
Here,
A parabolic route taken by the eagle as it soars into the sky and then descends to the ground is shown by the equation
=> h = t² - 10t + 25.
The vertex of the equation, which is provided by the formulas
=> t = -b/2a and h = f(t),
where a, b, and c are the coefficients of the quadratic equation, can then be found in order to graph it.
Here,
=> a = 1, b = -10, and c = 25.
Consequently, the apex is at t = 5 and h = f(5) = 0, respectively.
Given that t² has a positive coefficient, the parabola expands upwards, with the vertex being a minimum point.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
the sum of the numbers (20cba)16 and (a02)16 is ( (click to select) )16 and their product is ( (click to select) )16.
To solve this problem, we need to convert the hexadecimal numbers (20cba)16 and (a02)16 to decimal form, add them together, and then convert the result back to hexadecimal form.
(20cba)16 = 2x16^4 + 12x16^3 + 11x16^2 + 10x16^1 = 131402
(a02)16 = 10x16^2 + 0x16^1 + 2x16^0 = 256
Adding the two decimal numbers together gives us:
131402 + 256 = 131658
To convert this decimal number back to hexadecimal form, we can use the repeated division method.
131658 / 16 = 8228 remainder 10 (A)
8228 / 16 = 514 remainders 4 (4)
514 / 16 = 32 remainder 2 (2)
32 / 16 = 2 remainder 0
2 / 16 = 0 remainder 2
Therefore, (20cba)16 + (a02)16 = (131658)10 = (2002A)16.
To find their product, we can multiply the two decimal numbers together and then convert the result to hexadecimal form.
131402 x 256 = 33559552
Converting this decimal number to hexadecimal form gives us:
33559552 / 16 = 2097472 remainder 0
2097472 / 16 = 131092 remainder 0
131092 / 16 = 8193 remainder 4 (4)
8193 / 16 = 512 remainders 1 (1)
512 / 16 = 32 remainder 0
32 / 16 = 2 remainder 0
2 / 16 = 0 remainder 2
Therefore, the product of (20cba)16 and (a02)16 is (33559552)10 = (2011004)16.
For more questions like numbers (20cba)16, visit the link below:
https://brainly.com/question/9713995
#SPJ11