a 16.7 ml sample of a 0.334 m aqueous hydrocyanic acid solution is titrated with a 0.342 m aqueous barium hydroxide solution. what is the ph at the start of the titration, before any barium hydroxide has been added?

Answers

Answer 1

The pH at the start of the titration, before any barium hydroxide has been added, is 5.88.

Hydrocyanic acid (HCN) is a weak acid, so we can use the equation for the ionization of HCN in water to calculate the pH of the solution:

HCN + H2O ⇌ H3O+ + CN-

The acid dissociation constant (Ka) for HCN is 4.9 x 10^-10. At the start of the titration, before any barium hydroxide has been added, the solution contains only HCN and water. We can use the initial concentration of HCN and the Ka value to calculate the initial concentration of H3O+:

Ka = [H3O+][CN-] / [HCN]

[H3O+] = √(Ka x [HCN]) = √(4.9 x 10^-10 x 0.334) = 1.32 x 10^-6 M

The pH of the solution can be calculated using the equation:

pH = -log[H3O+]

pH = -log(1.32 x 10^-6) = 5.88

For more question on pH click on

https://brainly.com/question/172153

#SPJ11


Related Questions

Which stage of mitosis is the easiest (in your opinion) to see on the slide? What about it makes it easy to identify?

Answers

I reckon is is the Prophase stage. My reason is that the difference between Interphase and Prophase is actually really obvious. In Interphase, the chromosomes aren't paired up, whereas in Prophase, the chromosomes are beginning to pair up.

the unit cell in a certain lattice consists of a cube formed by an anion, a, at each corner, an anion in the center, and a cation,x, at the center of each face. how many anions and cations are there in the unit cell?

Answers

Answer: There are 8 anions and 6 cations in the unit cell.

There are 8 anions and 6 cations in the unit cell. The unit cell consists of a cube, with an anion, 'a', at each corner, an anion in the center, and a cation, 'x', at the center of each face.

The cube is made up of 8 cubes, each of which is made up of one anion at each corner, and one cation at the center. Therefore, there are 8 anions in the unit cell, one at each corner. In addition, there is an anion in the center of the unit cell.

The 6 cations are located in the center of each of the faces of the cube. The cations are located in the middle of each face and therefore, there are 6 cations in the unit cell.

In total, there are 8 anions and 6 cations in the unit cell.


Learn more anions and cations here:

https://brainly.com/question/20781422#



#SPJ11

What pressure is required to reduce 50 mL of a gas at standard conditions to 20 mL at a temperature of 23◦C?
Answer in units of atm.

Answers

The pressure required to reduce 50 mL of a gas at standard conditions to 20 mL at a temperature of 23 °C is 10.656 atm. To solve this problem, the ideal gas law is used.

What is the ideal gas law?

The ideal gas law is a fundamental equation of state that relates the pressure, volume, temperature, and number of moles of an ideal gas. The ideal gas law is expressed mathematically as:

PV = nRT

At standard conditions (STP), the volume of 50 mL of a gas is equivalent to 0.050 L, and the temperature is 273 K. We can use this information to find the initial number of moles of the gas:

n₁ = P*V₁/R*T₁= P(0.050 L)/(0.08206 L·atm/mol·K)(273 K) = P/2.4844

where V₁ = 0.050 L, R = 0.08206 L·atm/mol·K, and T₁ = 273 K.

To reduce the volume to 20 mL (0.020 L) at a temperature of 23°C (296 K), we can rearrange the ideal gas law equation and solve for the required pressure:

P2 = n₁*RT₂/V₂ = (P/2.4844)(0.08206 L·atm/mol·K)(296 K)/(0.020 L) = 10.656P

where T₂ = 296 K and V₂ = 0.020 L.

Therefore, the pressure required to reduce 50 mL of a gas at standard conditions to 20 mL at a temperature of 23°C is:

P₂ = 1 atm × 10.656 = 10.656 atm

Thus, the pressure required to reduce the volume of the gas is 10.656 atm.

To know more about the ideal gas law, visit:

https://brainly.com/question/28257995

#SPJ1

if the initial concentration of a is 0.0275 m and the rate constant has a value of 0.0082 s-1, what is the concentration of a after 540.0 s?

Answers

If the initial concentration of A is 0.0275 M and the rate constant has a value of 0.0082 s^-1, what is the concentration of A after 540.0 s? The rate of reaction can be expressed as follows: rate = -d[A]/dt = k [A]The integrated rate law for a first-order reaction is: ln [A]t/[A]0 = -kt Where [A]t is the concentration of the reactant at a particular time t.

[A]0 is the initial concentration of the reactant at t=0.k is the rate constant.t is the time of the reaction. As a result, we can rearrange the equation to find the concentration of the reactant at a specific time t as follows: ln[A]t = -kt + ln[A]0Given that the initial concentration of A is 0.0275 M,

the rate constant has a value of 0.0082 s^-1, and we want to find the concentration of A after 540.0 s.We will substitute the provided values into the equation as follows:

ln[A]t = -kt + ln[A]0ln[A]t = (-0.0082 s^-1) (540.0 s) + ln (0.0275 M)ln[A]t = -4.4358 + ln(0.0275)ln[A]t = -4.4358 - 3.5941ln[A]t = -8.0299[A]t = e^-8.0299[A]t = 0.000293 M Therefore, the concentration of A after 540.0 s is 0.000293 M.

To know more about Concentration refer here:

https://brainly.com/question/10725862#

#SPJ11

if the concentration of zn2 is 0.10 m, what concentration of cr3 should be used so that the overall cell potential is 0 v?

Answers

Answer: The concentration of Cr3 needed to achieve a cell potential of 0 V is 0.0310 M.

To calculate the concentration of Cr3 needed for the overall cell potential to be 0 V, you will need to use the Nernst equation. The equation is as follows: Ecell = E°cell - (2.303 RT/nF) * lnQ, where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of moles of electrons involved in the reaction, and F is the Faraday constant.



Given the information in the question, the concentration of Zn2 is 0.10 M, you can calculate the concentration of Cr3 needed to achieve a cell potential of 0 V:



Ecell = 0 V

E°cell = E°cell (given)

R = 8.314 J/K•mol

T = 298 K (room temperature)

n = 2 (number of moles of electrons involved)

F = 96485 C/mol



Substituting these values into the equation, you get: 0 = E°cell - (2.303 * 8.314 * 298/2*96485) * lnQ.

Solving for Q (the reaction quotient), you get

Q = (E°cell/2.303RT/nF)

= (1.1V/2.303 * 8.314 * 298/2*96485)

= 0.0310 M.

Therefore, the concentration of Cr3 needed to achieve a cell potential of 0 V is 0.0310 M.



Learn more about concentration here:

https://brainly.com/question/10725862#





#SPJ11

would the volume be different if the gas was argon (under the same conditions)? match the words in the left column to the appropriate blanks in the sentences on the right.

Answers

No, the volume would not be different if the gas was argon under the same conditions as  two different gases that have the same number of moles, under the same conditions of temperature and pressure, would have the same volume.

"Explanation:In simple terms, the volume of a gas is proportional to the temperature, pressure, and number of particles (in moles) present. Therefore, under the same conditions of temperature, pressure, and number of particles, the volume of a gas will be the same, regardless of the identity of the gas.If the same number of moles of two different gases (such as nitrogen and argon) are present in the same container under the same temperature and pressure conditions, the volume of the two gases will be the same.In general, the volume of a gas is proportional to the number of moles of gas present in a container under constant temperature and pressure conditions. It follows that two different gases that have the same number of moles, under the same conditions of temperature and pressure, would have the same volume.

For more such question on gas

https://brainly.com/question/20492463

#SPJ11

g if a chemical spill occurs in lab, the best step to take is...group of answer choicesimmediately use the safety showerimmediately let the instructor knowcover the spill with absorbent material such as paper towelsquickly rinse the area with as much cool water as possible

Answers

If a chemical spill occurs in the lab, the best step to take is to quickly rinse the area with as much cool water as possible. A chemical spill can lead to harmful chemical exposure, and the best way to avoid exposure is to act fast and neutralize the spill.

What is the best way to handle a chemical spill?

Chemical spills can occur anywhere that hazardous chemicals are being used, but they are most common in industrial and laboratory settings. If you come across a chemical spill, it's important to act quickly and safely to prevent exposure. Here are the steps to follow in the event of a chemical spill:

Step 1: Assess the situation

The first step in handling a chemical spill is to assess the situation. Determine the type and quantity of the spilled material, as well as the potential hazards associated with it. This will help you determine the appropriate response.

Step 2: Evacuate the area

If the spill is large or the chemical is particularly dangerous, evacuate the area immediately. Alert others in the area to evacuate as well.

Step 3: Alert others

Once you have assessed the situation and determined the appropriate response, alert others in the area to the spill. Notify your instructor or supervisor and follow their instructions.

Step 4: Personal Protective Equipment (PPE)

When responding to a chemical spill, be sure to wear appropriate personal protective equipment (PPE), such as gloves, goggles, and lab coats.

Step 5: Use absorbent material

Use absorbent material, such as paper towels or absorbent socks, to contain the spill and prevent it from spreading. Once the spill is contained, dispose of the absorbent material according to your lab's waste disposal guidelines.

Step 6: Rinse the area with water

Quickly rinse the area with as much cool water as possible. This will help to neutralize the spill and prevent further damage.

Step 7: Use safety shower

If the spilled chemical comes in contact with your skin, use a safety shower to rinse off the chemical. Make sure to rinse thoroughly for at least 20 minutes.

Step 8: Dispose of contaminated materials

Dispose of contaminated materials according to your lab's waste disposal guidelines. Make sure to properly label all waste containers.

So, in a chemical spill the right thing to do will be 4. quickly rinse the area with as much cool water as possible

Learn more about chemical spill on:

https://brainly.com/question/30125064

#SPJ11

How many moles are in 8.52 x 10^33 molecules of Carbonic Acid (23)?

Answers

Answer: There are approximately 141.7 moles

Explanation:

To convert the number of molecules of a substance to the number of moles, we need to divide the number of molecules by Avogadro's Number, which is approximately 6.022 x 10^23 molecules per mole.

Therefore, to calculate the number of moles in 8.52 x 10^33 molecules of carbonic acid (H2CO3), we can use the following formula:

Number of moles = Number of molecules / Avogadro's Number

Number of moles = 8.52 x 10^33 / 6.022 x 10^23

Number of moles = 141.7 mol

Therefore, there are approximately 141.7 moles of carbonic acid in 8.52 x 10^33 molecules of carbonic acid.

Read more about Moles and Molecules:

https://brainly.com/question/24191825

) your sample will not be useful to you after 95% of the radioactive nuclei present on the day the sample arrives have disintegrated. for about how many days after the sample arrives will you be able to use the polonium?

Answers

The half-life of Polonium-210 is 417 days.


We know that the half-life of polonium is 139 days. This means that half of the original amount of polonium will disintegrate every 139 days. Now, suppose that the original amount of polonium is P0. After 139 days, half of the amount will be disintegrated. This means that the amount remaining is P0/2. Again, after another 139 days, half of the remaining amount will disintegrate. This means that the amount remaining will be P0/4. Similarly, after 3 half-lives, which is 3 x 139 = 417 days, the amount remaining will be:

P0/2³ = P0/8

This means that 7/8 of the original amount of polonium has disintegrated.

Therefore, 95% of the original amount has disintegrated after 139 days x (3 + 0.2)

half-lives = 417 days.

Therefore, the duration for which you will be able to use the polonium after the sample arrives is 417 days.

The question you wrote is incomplete, maybe the complete question is:

Polonium-210

The half-life of polonium is 139 days, but your sample will not be useful to you after 95% of the radioactive nuclei present on the day the sample arrives has disintegrated. For about how many days after the sample arrives will you be able to use the polonium?

Learn more about polonium at https://brainly.com/question/28096866

#SPJ11

Given 30 grams NaBr how many grams of Cl2 are required to complete this reaction?
2NaBr + Cl2 = 2NaCl + Br2

Answers

Answer:

10.3 grams

Explanation:

The balanced equation shows that 1 mole of Cl2 reacts with 2 moles of NaBr. To find out how much Cl2 is required to react with 30 grams of NaBr, we need to convert grams to moles.

First, we need to find the molar mass of NaBr:

NaBr = 23 + 79.9 = 102.9 g/mol

Now we can calculate the number of moles of NaBr:

30 g NaBr ÷ 102.9 g/mol = 0.291 moles NaBr

From the balanced equation, we know that 1 mole of Cl2 reacts with 2 moles of NaBr. Therefore, we need half as many moles of Cl2 as we have moles of NaBr:

0.291 moles NaBr ÷ 2 = 0.1455 moles of Cl2

Finally, we can convert moles of Cl2 to grams using its molar mass:

Cl2 = 35.5 x 2 = 71 g/mol

0.1455 moles Cl2 x 71 g/mol = 10.3 grams of Cl2

Therefore, 10.3 grams of Cl2 are required to react completely with 30 grams of NaBr in this reaction.

2 nh3 3 cuo g 3 cu n2 3 h2o in the above equation how many moles of water can be made when 84 moles of nh3 are consumed?

Answers

By using the stoichiometric ratio of the equation 2 NH3 + 3 CuO → 3 Cu + N2 + 3 H2O. when 84 moles of NH3 are consumed, 504 moles of H2O can be made.

Given the equation: 2 NH3 + 3 CuO → 3 Cu + N2 + 3 H2O
If 84 moles of NH3 are consumed, then:
Step 1:

Calculate the number of moles of CuO required for the reaction.
Using the stoichiometric ratio of the equation, the number of moles of CuO required for the reaction is (2 x 84 moles NH3) = 168 moles CuO.
Step 2:

Calculate the number of moles of H2O formed.
Using the stoichiometric ratio of the equation, the number of moles of H2O formed in the reaction is (3 x 168 moles CuO) = 504 moles H2O.
Therefore, when 84 moles of NH3 are consumed, 504 moles of H2O can be made.

For more such questions on stoichiometric ratio , Visit:

https://brainly.com/question/9413308

#SPJ11


magnesium chloride is a common deicer used to melt snow on the road in winter. what is the freezing point of a solution where 34.4 g of magnesium chloride is dissolved in 0.9 kg of water (kf

Answers

Answer : The freezing point of the solution is -0.746 °C.

Magnesium chloride is a common deicer used to melt snow on the road in winter.To find out the freezing point of the solution, we need to use the formula ΔTf = Kf × m where ΔTf is the freezing point depression, Kf is the freezing point depression constant, and m is the molality of the solution.

First, we need to find the molality of the solution. Molality is defined as the number of moles of solute per kilogram of solvent. The molar mass of magnesium chloride is 95.2 g/mol. Therefore, the number of moles of magnesium chloride in the solution is:

Number of moles of magnesium chloride = mass of magnesium chloride / molar mass of magnesium chloride
= 34.4 g / 95.2 g/mol
= 0.361 moles

The mass of water in the solution is 0.9 kg, which is equivalent to 900 g. Therefore, the molality of the solution is:
Molality = number of moles of solute / mass of solvent in kg
= 0.361 moles / 0.9 kg
= 0.401 m

The freezing point depression constant of water is 1.86 °C/m. Therefore, the freezing point depression of the solution is: ΔTf = Kf × m
= 1.86 °C/m × 0.401 m
= 0.746 °C

The freezing point of pure water is 0 °C. Therefore, the freezing point of the solution is: Freezing point of solution = freezing point of pure solvent − ΔTf
= 0 °C − 0.746 °C
= -0.746 °C

Know more about freezing point here:

https://brainly.com/question/3121416

#SPJ11

trontium-90 has a half-life of 28.8 years. if you start with a 10 gram sample of strontium-90, how much will be left after 115.2 years?

Answers

After 115.2 years starting with a 10 gram sample of strontium-90, only 0.625 grams of strontium-90 will remain due to radioactive decay.

Strontium-90 is a radioactive isotope that goes through dramatic rot with a half-existence of 28.8 years. This really intends that after each 28.8-year time frame, how much strontium-90 excess in an example is divided. To decide how much strontium-90 will be left after 115.2 years, we can utilize the accompanying recipe:

N = N0 * (1/2)^(t/T1/2)

where N is the last measure of strontium-90, N0 is the underlying sum, t is the time slipped by, and T1/2 is the half-life. Subbing the given qualities, we get:

N = 10 g * (1/2)^(115.2/28.8)

N = 10 g * (1/2)^4

N = 10 g * 0.0625

N = 0.625 g

In this manner, after 115.2 years, beginning with a 10 gram test of strontium-90, just 0.625 grams of strontium-90 will stay because of radioactive rot. This estimation shows that how much radioactive material declines over the long run, which is a significant thought in the protected dealing with and removal of radioactive materials.

To learn more about trontium-90 and strontium-90, refer:

https://brainly.com/question/14102797

what is the volume of 1.00 mole of H2

Answers

Answer:

22.414 [tex]dm^{3}[/tex] at S.T.P  and 24 [tex]dm^{3}[/tex]

Explanation:

Volume of one mole of gas at standard temperature and pressure, stp, (0 °C, 1 atm) is 22.4 dm3. At room temperature and average pressure, rtp, the volume of any gas is approximately 24 dm3.

calculate the enthalpy change when 5 g of zinc metal is heated from 100oc to the point where the entire sample is melted. (the heat of fusion for zinc is 112.4 j/g and its specific heat capacity is 0.388 j/goc.)

Answers

The enthalpy change when 5 g of zinc metal is heated from 100oc to the point where the entire sample is melted having the heat of fusion for zinc is 112.4 j/g and its specific heat capacity is 0.388 is 581.4 J.

specific heat capacity is 0.388 j-1c-1 .

The specific heat capacity can be defined as the quantity of heat (J) absorbed per unit mass (kg) of the material when its temperature increases 1 K.  

The heat of fusion for zinc is 112.4 j-1.

The expression for Heat energy is,

             = mcΔT+mL

where, m = mass of water

c = specific heat capacity of water

L = specific latent heat of fusion of ice

ΔT = change in temperature

Heat energy can be explained as a result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. It can be transferred from one object to another. The transfer or flow of heat energy due to the difference in temperature between the two objects is called heat.

Putting all the values in the expression of heat energy, we get,

  = 0.5 g * 0.388 * 100 + 5 * 112.4

  = 19.4 + 562

   = 581.4 J

To learn more about specific heat capacity

https://brainly.com/question/27991746

#SPJ4

how many moles of each reactant are needed to produce 3.60*10 to the power of 2 g ch3oh

Answers

We need 5.62 moles of H2 and 5.62 moles of CO to produce 3.60 × 10^2 g of CH3OH.

How to calculate the mole ?

To calculate the number of moles of a substance, we use the formula:

moles = mass / molar mass

where "mass" is the mass of the substance in grams and "molar mass" is the molar mass of the substance in grams per mole.

To determine the number of moles of reactants needed to produce a given amount of product, we need to use the balanced chemical equation for the reaction and the molar mass of the product.

Assuming that the reaction is:

2H2 + CO → CH3OH

We can see that the stoichiometry of the reaction is 2:1, which means that for every 2 moles of H2, we need 1 mole of CO to produce 1 mole of CH3OH.

The molar mass of CH3OH is:

12.01 + 4(1.01) + 16.00 = 32.04 g/mol

Therefore, to produce 3.60 × 10^2 g of CH3OH, we need:

n(CH3OH) = (3.60 × 10^2 g) / (32.04 g/mol) = 11.23 mol

Since the stoichiometry of the reaction is 2:1, we need half as many moles of H2 as we do of CH3OH:

n(H2) = 1/2 × n(CH3OH) = 1/2 × 11.23 mol = 5.62 mol

And we need half as many moles of CO as we do of CH3OH:

n(CO) = 1/2 × n(CH3OH) = 1/2 × 11.23 mol = 5.62 mol

Therefore, we need 5.62 moles of H2 and 5.62 moles of CO to produce 3.60 × 10^2 g of CH3OH.

To know more about moles visit :-

https://brainly.com/question/1634438

#SPJ1

the second electron affinity values for both oxygen and sulfur are unfavorable (endothermic). explain.

Answers

Explanation:

If we look at the definition of the second electron affinity:

The second electron affinity is the enthalpy change when one mole of gaseous 2⁻ ions is formed from one mole of gaseous 1⁻ ions

The equations of the second electron affinity for oxygen and sulfur:

O⁻ (g) + e⁻ → O²⁻ (g)

S⁻ (g) + e⁻ → S²⁻ (g)

This process is endothermic as we are trying to combine an electron with a negative ion, and so we must overcome the repulsion. Applying energy will overcome it.

The second electron affinity is the energy change that occurs when an atom in the gaseous state gains an additional electron.

For both oxygen and sulfur, the second electron affinity values are unfavorable, meaning that the energy change that occurs is endothermic. This means that energy is being absorbed by the atom, and the atom is becoming more stable.
To understand why the second electron affinity values for oxygen and sulfur are unfavorable, it is important to look at the electron configurations of these atoms. Oxygen's electron configuration is 2s22p4, meaning it has 8 electrons in its outermost shell. Sulfur has an electron configuration of 2s22p63s2, meaning it has 16 electrons in its outer shell. Since both of these atoms have a full outer shell of electrons, they are not in need of an additional electron, and therefore do not have a strong tendency to gain one. As a result, it takes a lot of energy for the atom to gain an additional electron, meaning the second electron affinity value is unfavorable (endothermic).

In conclusion, the second electron affinity values for oxygen and sulfur are unfavorable (endothermic) because they already have full outer shells of electrons and do not have a strong tendency to gain an additional electron.

To know more about endothermic reaction  click on below link :

https://brainly.com/question/23184814

#SPJ11

how many possible orientations are there with which co and o2 can collide, and how many of those orientations can result in a successful reaction?

Answers

Possible orientations with which CO and O₂ can collide are: 8, and out of which orientations that can result in a successful reaction are: 4

CO-O2 Collision Orientations:


1. Linear - CO and O₂ are aligned in a straight line
2. Propeller - CO and O₂ are at 90° angle
3. Clapping - CO and O₂ move parallel to each other, 180° out of phase
4. Disrotatory - CO and O₂ move parallel, same phase
5. Conrotatory - CO and O₂ move parallel, opposite phase
6. Tumbling - CO and O₂ are at an angle and tumble in an elliptical path
7. Twisting - CO and O₂ at a 60° angle, move opposite to each other
8. Vibration - CO and O₂ oscillate

Successful Reactions:
1. Linear
2. Propeller
3. Clapping
4. Disrotatory

These four orientations can result in a successful reaction because the molecules are in the correct orientation for the electron orbitals to align, allowing for the electron transfer needed for the reaction to occur.

In conclusion, there are 8 possible orientations with which CO and O₂ can collide, and out of those 8, only 4 orientations result in a successful reaction.

To know more about orientations refer here:

https://brainly.com/question/4474232#

#SPJ11

why do you think this reaction only undergoes mono iodination? think about the discussion earlier about activation and deactivation of the benzene ring and the role iodine may play once it is on the ring.

Answers

The reaction only undergoes mono iodination due to the increased reactivity of the benzene ring when iodine is added.

The electron deficient nature of the benzene ring makes it easier for the reaction to occur in a single step, rather than multiple steps.

The reaction only undergoes mono iodination due to the reactivity of the benzene ring. When iodine is added to the benzene ring, it makes the ring more electron deficient.

This increases the reactivity of the benzene ring and makes it easier for the reaction to occur in a single step.

In contrast, if more iodine is added to the ring, it makes the ring less electron deficient and thus decreases its reactivity.

This makes it harder for the reaction to occur in a single step and thus causes multiple steps to occur.

The discussion earlier about activation and deactivation of the benzene ring was related to this reaction. The deactivating group like the iodine makes the ring less reactive, thus favoring single step reactions.

Meanwhile, the activating group makes the ring more reactive, favoring multiple step reactions.

to know more about mono iodination refer here

https://brainly.com/question/16867213#

#SPJ11

calculate the molarity of a solution made from 2.63 moles of nacl dissolved in a total volume of 500.0 ml.

Answers

The molarity of a solution made from 2.63 moles of nacl dissolved in a total volume of 500.0 ml is 5.26 M.

Molarity is the concentration of a solution in terms of moles of solute per liter of solution. The formula for calculating the molarity of a solution is as follows:

Molarity = moles of solute / volume of solution (in liters)

Given,

Moles of solute (NaCl) = 2.63 mol

Total volume of the solution = 500.0 mL = 0.5 LA

substitute the given values in the formula,

Molarity = 2.63 / 0.5

Molarity = 5.26 M

The molarity of the solution made from 2.63 moles of NaCl dissolved in a total volume of 500.0 mL is 5.26 M.

For more such questions on molarity , Visit:

https://brainly.com/question/14469428

#SPJ11

a solution at room tempearature with a ph of less than 7 will be: select the correct answer below: acidic basic neutral depends on the solution
a. Acidic
b. Basic
c. Neutral
d. Depens on the solution

Answers

The correct answer is the option a) acidic. A solution at room temperature with a pH of less than 7 will be acidic.

What are acids and bases?

Acids and bases are two types of chemical compounds that are important to human life. Acids are substances that have a pH of less than 7. They taste sour and, when mixed with a base, form a neutral substance. Acids are often used in industrial processes, such as cleaning or etching metals, as well as in medicine.

Bases are substances that have a pH of greater than 7. They taste bitter and have a slippery feel. When mixed with an acid, they form a neutral substance. Bases are commonly used in cleaning products and in the production of fertilizers and plastics.

A solution at room temperature with a pH of less than 7 will be acidic.

Therefore, the correct answer is (a) Acidic.

To learn more about pH refer: https://brainly.com/question/16086492

#SPJ11

adding this test solution will precipitate sulfate ions: select one: a. naoh b. bacl2 c. hno3 d. nh4cl

Answers

Answer: The solution that will precipitate sulfate ions is B. BaCl2.

How do you test for sulfate ions?

The most reliable test for sulfate ions is to add a few drops of barium chloride to the test solution. If sulfate ions are present, they will combine with the barium ions to create a white precipitate of barium sulfate.

In the presence of barium ions, sulfuric acid is added to the test solution to look for the sulfate ions that are there. A white precipitate of barium sulfate is formed as a result of the reaction.

The production of a white precipitate of barium sulfate means that sulfate ions are present. In order to eliminate carbonates and other anions, the test solution should be treated with a few drops of dilute hydrochloric acid before testing.



Learn more about Barium chloride here:

https://brainly.com/question/14444265#



#SPJ11

which compound in each pair below would you expect to have a greater fluorescence quantum yield? explain

Answers

The compound O,O'-dihydoxyazobenzene, have a greater fluorescence quantum yield because of the rigidity provided by the -N=N- group. Option D is correct.

Fluorescence quantum yield is a measure of the efficiency of a molecule to emit fluorescence, which is dependent on various factors, including the rigidity or flexibility of the molecule and the presence of any functional groups that can affect the electronic structure. In the given options, O,O'-dihydoxyazobenzene has a rigid structure due to the presence of the azo group (-N=N-) that is expected to restrict the molecule's vibrational freedom, thereby reducing non-radiative energy loss and enhancing fluorescence.

On the other hand, bis(o-hydroxyphenyl) hydrazine has a flexible structure due to the -NH-NH- group, which can lead to higher non-radiative energy loss, reducing the fluorescence quantum yield. Therefore, O,O'-dihydoxyazobenzene is expected to have a greater fluorescence quantum yield than bis(o-hydroxyphenyl) hydrazine.

Hence, D. O,O'-dihydoxyazobenzene, because of the rigidity provided by the  -N=N- group is the correct option.

To know more about Fluorescence here

https://brainly.com/question/14742655

#SPJ4

--The given question is incomplete, the complete question is

"Which compound in each pair below would you expect to have a greater fluorescence quantum yield? A) bis(o-hydroxyphenyl) hydrazine, because of the chemical activity of the two extra H atoms. B) bis(o-hydroxyphenyl) hydrazine, because of the flexibility provided by the -NH -NH - group C) O,O'-dihydoxyazobenzene, because of the chemical activity of the -N=N- group. D) O,O'-dihydoxyazobenzene, because of the rigidity provided by the  -N=N- group."--

if an isotope has a half-life of 4 billion years, then in 4 billion years what will happen? group of answer choices the original amount will have doubled. all of the original amount will still be present. all of the original amount will have decayed. half of the original amount will still be present.

Answers

If an isotope has a half-life of 4 billion years, then in 4 billion years, half of the original amount will still be present.

What is an isotope?

An isotope is a variant of a chemical element that has the same number of protons but a different number of neutrons in the nucleus of an atom.

For example, carbon has two common isotopes: carbon-12 and carbon-14. Carbon-12 has six protons and six neutrons in its nucleus, whereas carbon-14 has six protons and eight neutrons.

Since the number of protons in an atom determines its chemical properties, isotopes of the same element have nearly identical chemical characteristics. Because isotopes have different numbers of neutrons, they have different atomic masses, but their physical and chemical properties are almost identical.

The half-life of a radioactive isotope is the amount of time it takes for half of the original quantity of the isotope to decay. Half-life is a critical consideration in nuclear medicine and radiology since it determines how long a radioactive substance will be active in the body before being completely eliminated.

The half-life of a given radioactive isotope is constant and cannot be altered by any external factors, such as temperature or pressure, which is a unique characteristic of radioactive decay.Isotopes can be found naturally or can be artificially made, and they can be radioactive or stable

To know more about half-life click on below link:

https://brainly.com/question/24710827#

#SPJ11

two compounds are both composed of the exact same types and number of atoms. however, the atoms are connected in different ways in each compound. these two compounds would be classified as .

Answers

Answer:

Isomers

Explanation:

Molecules with the same molecule formula but different structural formulae

number of Li atoms in 4.5 mol of Li

Answers

Number of li atoms = 6.02 x 10^23 mol-1 x 4.5 mol = 2.709 x 10^24 atoms
2.709x10^24 atoms
Goodluck

a metal will be placed in fire and an electron will absorb enough energy to be promoted to a higher energy state. what do we call this higher energy state?

Answers

When a metal is placed in the fire and an electron absorbs enough energy to be promoted to a higher energy state, this higher energy state is referred to as the excited state.

An excited state is a state of a molecule or atom in which it has absorbed sufficient energy to move an electron from its current orbital to a higher orbital. This state is referred to as the excited state, and the electron that has been elevated to a higher energy level is said to be in an excited state.

The reason behind the electron's promotion to a higher energy state when a metal is placed in fire is that the heat causes the electrons to absorb energy, which causes them to move to a higher energy state. When electrons move to higher energy states, they release energy in the form of light, heat, or other radiation.

Learn more about electron https://brainly.com/question/26084288

#SPJ11

select the weakest reducing agent from the list of answer options. all species without a phase listed are aqueous. g ni(s) pb2 sn(s) al(s) cr2 zn(s)

Answers

The weakest reducing agent from the given list of answer options is Pb2+.

A reducing agent is a substance that donates electrons, thus causing the reduction of another species. In other words, reducing agents are oxidized when they reduce another substance.

The stronger the reducing agent, the more readily it donates electrons, and the more likely it is to cause the reduction of another species. The weaker the reducing agent, the less readily it donates electrons, and the less likely it is to cause the reduction of another species.

To  determine the weakest reducing agent:

Pb2+: This species can act as a reducing agent, but it is not very strong. It has a standard reduction potential of -0.13 V.

This means that it is only a weak reducing agent.

Zn(s): This is a strong reducing agent, with a standard reduction potential of -0.76 V. It can readily donate electrons, and is more likely to cause the reduction of another species than Pb2+.Cr2+: This is also a strong reducing agent, with a standard reduction potential of -0.91 V. It can readily donate electrons, and is more likely to cause the reduction of another species than Pb2+.Al(s): This is an even stronger reducing agent, with a standard reduction potential of -1.66 V. It can readily donate electrons, and is much more likely to cause the reduction of another species than Pb2+.Sn(s): This is another strong reducing agent, with a standard reduction potential of -0.14 V. It can readily donate electrons, and is more likely to cause the reduction of another species than Pb2+.Ni(s): This is the strongest reducing agent on the list, with a standard reduction potential of -0.25 V. It can readily donate electrons, and is the most likely to cause the reduction of another species.

However, it is not one of the answer options, so we can ignore it.

From this analysis, we can conclude that Pb2+ is the weakest reducing agent from the given list of answer options.

To know more about the reducing agent https://brainly.com/question/2890416

#SPJ11

what is the mass of sodium chloride required to create a 0.875 m solution 534 g of water. how many moles of nacl is required

Answers

The mass of sodium chloride that is required to create a 0.875 M solution 534 g of water is 27.291 g and 0.467 moles of NaCl is required.

Mass of water = 534 g

Molality of the solution = 0.875 m

Molality is the number of moles of solute per kilogram of solvent.

It is represented by the formula:

Molality = number of moles of solute / kilogram solvent

Its mathematical expression is:

m = n/kg

Now we will convert the g into kg.

Mass of water = 534 g× 1kg/1000 g = 0.534 kg

putting the values in formula:

0.875 m = n / 0.534 kg

n = 0.467 mol

Now we will calculate the mass of sodium chloride:

Mass = number of moles × molar mass

Mass = 0.467 mol × 58.44 g/mol

Mass = 27.291 g

Thus, the required mass and moles of NaCl are 27.291g and 0.467mol respectively.

To know more about molality here

https://brainly.com/question/27987133

#SPJ4

would you expect the entropy of 1.00 moles of agcl added to 1.00 l of water to form agcl (aq) to be greater than, less than, or equal to the entropy of 1.00 moles of nacl added to 1.00 l of water to form nacl (aq)? explain your reasoning. (hint: think about your solubility rules)

Answers

The entropy of 1.00 moles of AgCl added to 1.00 L of water to form AgCl(aq) would be less than the entropy of 1.00 moles of NaCl added to 1.00 L of water to form NaCl(aq).

This is because AgCl is less soluble in water compared to NaCl, due to solubility rules. When NaCl dissolves in water, it forms more ions and increases entropy more significantly than AgCl does.

Entropy is a thermodynamic quantity that describes the degree of disorder or randomness in a system. When a substance dissolves in a solvent, the entropy of the system increases due to the increased disorder caused by the mixing of the two substances.

In the given scenario, 1.00 moles of AgCl is added to 1.00 L of water to form AgCl(aq), and 1.00 moles of NaCl is added to 1.00 L of water to form NaCl(aq).

Since NaCl is more soluble in water compared to AgCl, it forms more ions when it dissolves in water, resulting in a greater increase in disorder and hence a greater increase in entropy.

Solubility rules state that AgCl is insoluble in water, meaning that it does not dissociate into ions and remains as AgCl(s) in water. On the other hand, NaCl is highly soluble in water, meaning that it dissociates into Na+ and Cl- ions when it dissolves in water.

Therefore, when NaCl dissolves in water, it forms more ions and contributes more to the increase in entropy of the system compared to AgCl.

Therefore, the entropy of 1.00 moles of AgCl added to 1.00 L of water to form AgCl(aq) would be less than the entropy of 1.00 moles of NaCl added to 1.00 L of water to form NaCl(aq), due to the difference in solubility and the resulting difference in the number of ions formed.

To learn more about entropy, refer below:

https://brainly.com/question/13135498

#SPJ11

Other Questions
The major idea underlying the fundamental lexical hypothesis is that over time, trait terms evolved to describe the most important individual differences. They are important because they enable people to predict and _______ life outcomes.A.controlB.explainC.denyD.describe Two plants growing beside one another try to access limited availablesunlight.What ecological interaction describes the relationship between the twoplants?Choose 1 answersBCompetitionMutualismHerbivoryCommensalism Multiple ChoiceWhich of the following describes one of the purposes of the S.A.F.E. Mortgage Licensing Act?A. O To create a national database of mortgage professionalsB. O To ensure that licensing schemes among the states are all the sameC. To create one regulatory body to make licensing decisions among all statesD. O To create a licensing scheme for mortgage professionals for the first time everSubmit kendall company sold equipment for $250,000 cash, purchased a building for $650,000 cash, sold short-term investments for $280,000 cash, and repaid a note payable for $230,000 plus $23,000 of interest. the net cash flow from investing activities was . over the course of a half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. what is the parallax angle (p) in this case?\ Forced-choice question formats are especially good at dealing with which of the following issues?a. fence sittingb. faking goodc. faking badd. people self-reporting more than they can know the temperature is raised above the optimum for a specific enzyme. what would you expect to observe as a result of the change in temperature? a set of specific, sequential steps that describe in natural language (such as structured english or pseudocode) exactly what the computer program must do to complete its task is known as a(n) you run the ipconfig /all command on your windows computer and see a hexadecimal value that looks like this: e0-70-ea-4e-ab-a5 what does it represent? select two. nclusion.1. Suppose a drought caused the local extinction of all insects, slugs and clams. This allowed thedrought-resistant "deep stick bug" to grow in their absence, which lives 12 centimeters underground.Explain how the change in the environment would affect the populations of birds a nurse administers incorrect medication to a client. after assessing the client, and completing an incident report, which is the priority action by the nurse? I need help asap please sb . which of the following is most likely to be a toll good? police protection street lights tuition paid at a public university pizza with extra cheese 3 disadvantage of bus topology 3.1 Define the term democracy and state ONE reason why most countries prefer democratic states. ( how much would sales marketing need to increase sales to have the same effect as decreading cogs by 1200 According to the value chain perspective, ______ are located in the network that connects different, but related activities within a firm. and now- The cost to repair your windshield after a hailstorm is $200. According to the insurancecoverage you chose, how much would you have to pay for the repair? a client receiving moderate sedation for a minor surgical procedure begins to vomit. what should the nurse do first? x=8 y=2 find x and y