1.3) Which of the following alkyl halides cannot be used to
synthesize an ester from a carboxylate anion? -CH3Br -CH2CH3Cl
-(CHE)3Cl -CH3CH2CH2Br

Answers

Answer 1

The alkyl halide that cannot be used to prepare (CHE)3Cl is CH3CH2CH2Br.

This alkyl halide cannot be used to prepare (CHE)3Cl because (CHE)3Cl is a tertiary alkyl halide, which means it has a carbon atom bonded to three other carbon atoms. CH3CH2CH2Br is a primary alkyl halide, meaning it has a carbon atom bonded to only one other carbon atom. In order to convert a primary alkyl halide into a tertiary alkyl halide, multiple substitution reactions would be required, which are generally difficult to carry out.

On the other hand, (CHE)3Cl can be prepared from CH3Cl by reacting it with excess CH3MgBr (Grignard reagent) followed by treatment with HCl. This reaction allows for the direct substitution of the halogen atom on the methyl group, resulting in the formation of (CHE)3Cl.

In summary, CH3CH2CH2Br cannot be used to prepare (CHE)3Cl because it is a primary alkyl halide, while (CHE)3Cl is a tertiary alkyl halide. The conversion from a primary alkyl halide to a tertiary alkyl halide requires multiple substitution reactions, which are generally difficult to carry out.

Know more about alkyl halide here:

https://brainly.com/question/29371143

#SPJ11


Related Questions

I need full solution please
4m 3m с 3m A Determine the reactions at the supports and draw moment and shear diagrams by method slop-deflection equations. Assume El is constant. 5kn/m 30kn 3m B 10kn 3m

Answers

The reactions at the supports and the moment and shear diagrams can be determined using the slope-deflection equations method. The given structure consists of a 4m beam supported by two fixed supports at the ends, with a concentrated load of 30kN at 3m from support A, a distributed load of 5kN/m over the entire span, and a concentrated load of 10kN at 3m from support B. By applying the slope-deflection equations, we can calculate the reactions and draw the moment and shear diagrams.

The slope-deflection equations relate the moments and slopes at different points along a beam to the applied loads and properties of the beam.

Step 1: Calculate the reactions at the supports by taking moments about one of the supports. In this case, the reactions at the supports will be equal due to symmetry.Step 2: Calculate the slope at the ends of the beam. The slope at each end is assumed to be zero due to the fixed supports.Step 3: Apply the slope-deflection equations to find the moments at different points along the beam.Step 4: Draw the moment diagram by plotting the calculated moments along the beam's length. The moment diagram will consist of straight lines with breaks at the locations of concentrated loads.Step 5: Calculate the shear forces at different points along the beam using the equilibrium equations.Step 6: Draw the shear diagram by plotting the calculated shear forces along the beam's length. The shear diagram will also have breaks at the locations of concentrated loads.Step 7: Analyze the moment and shear diagrams to determine the maximum bending moment and maximum shear force, which are crucial for designing the beam.

By applying the slope-deflection equations method, we can determine the reactions at the supports and draw the moment and shear diagrams for the given structure. These diagrams provide valuable information about the internal forces and moments in the beam, aiding in structural analysis and design.

Learn more about slope-deflection :

https://brainly.com/question/32165223

#SPJ11

3. It is expected to generate 3 million TL of income every year for 4 years, and 4 million TL every year for the remaining 6 years, and
Calculate the following by drawing the cash flow diagram for a facility with an initial investment cost of 10 million TL.
a) Net present value (NPV) for i=0.1
b) If the revenues obtained are invested in an investment instrument with an interest rate of 7.5%, at the end of the service life of the firm.
his earnings.

Answers

If the revenues obtained from the facility are invested in an investment instrument with an interest rate of 7.5% at the end of the service life, the total earnings will be 41.303 million TL.

To calculate the net present value (NPV) of the facility's cash flows, we need to discount each cash flow to its present value using a discount rate of 10% (i=0.1). The cash flow diagram for the facility is as follows:

Year 1: +3 million TL

Year 2: +3 million TL

Year 3: +3 million TL

Year 4: +3 million TL

Year 5: +4 million TL

Year 6: +4 million TL

Year 7: +4 million TL

Year 8: +4 million TL

Year 9: +4 million TL

Year 10: +4 million TL

To calculate the NPV, we need to discount each cash flow and sum them up. The formula for calculating the present value (PV) of a cash flow is:

PV = CF / (1 + r)^n

Where:

CF = Cash flow

r = Discount rate

n = Number of periods

Using the formula, we can calculate the present value of each cash flow:

Year 1: 3 million TL / (1 + 0.1)^1 = 2.727 million TL

Year 2: 3 million TL / (1 + 0.1)^2 = 2.479 million TL

Year 3: 3 million TL / (1 + 0.1)^3 = 2.254 million TL

Year 4: 3 million TL / (1 + 0.1)^4 = 2.058 million TL

Year 5: 4 million TL / (1 + 0.1)^5 = 2.859 million TL

Year 6: 4 million TL / (1 + 0.1)^6 = 2.599 million TL

Year 7: 4 million TL / (1 + 0.1)^7 = 2.363 million TL

Year 8: 4 million TL / (1 + 0.1)^8 = 2.147 million TL

Year 9: 4 million TL / (1 + 0.1)^9 = 1.951 million TL

Year 10: 4 million TL / (1 + 0.1)^10 = 1.772 million TL

Now, we sum up the present values of all cash flows:

NPV = -10 million TL + 2.727 million TL + 2.479 million TL + 2.254 million TL + 2.058 million TL + 2.859 million TL + 2.599 million TL + 2.363 million TL + 2.147 million TL + 1.951 million TL + 1.772 million TL

NPV = -10 million TL + 23.869 million TL

NPV = 13.869 million TL

Therefore, the net present value (NPV) for a discount rate of 10% (i=0.1) is 13.869 million TL.

b) If the revenues obtained from the facility are invested in an investment instrument with an interest rate of 7.5% at the end of the service life, we can calculate the future value of the cash flows. Since the cash flows occur at the end of each year, we can simply calculate the future value (FV) of each cash flow using the formula:

FV = CF * (1 + r)^n

Where:

CF = Cash flow

r = Interest rate

n = Number of periods

Calculating the future value of each cash flow and summing them up will give us the total earnings:

Year 1: 3 million TL * (

1 + 0.075)^9 = 5.163 million TL

Year 2: 3 million TL * (1 + 0.075)^8 = 4.783 million TL

Year 3: 3 million TL * (1 + 0.075)^7 = 4.428 million TL

Year 4: 3 million TL * (1 + 0.075)^6 = 4.097 million TL

Year 5: 4 million TL * (1 + 0.075)^5 = 4.636 million TL

Year 6: 4 million TL * (1 + 0.075)^4 = 4.271 million TL

Year 7: 4 million TL * (1 + 0.075)^3 = 3.934 million TL

Year 8: 4 million TL * (1 + 0.075)^2 = 3.626 million TL

Year 9: 4 million TL * (1 + 0.075)^1 = 3.345 million TL

Year 10: 4 million TL * (1 + 0.075)^0 = 4 million TL

Now, we sum up the future values of all cash flows:

Total earnings = 5.163 million TL + 4.783 million TL + 4.428 million TL + 4.097 million TL + 4.636 million TL + 4.271 million TL + 3.934 million TL + 3.626 million TL + 3.345 million TL + 4 million TL

Total earnings = 41.303 million TL

Therefore, if the revenues obtained from the facility are invested in an investment instrument with an interest rate of 7.5% at the end of the service life, the total earnings will be 41.303 million TL.

To know more about cash flows visit :

https://brainly.com/question/27994727

#SPJ11

a) Use MATLAB's backslash function to solve the following system of equations: X1 + 4x2 -2x3 + 3x4 = 3 = -X1 + 2x3 = 4 X1 +2x2-3x3 = 0 X1 -2x3 + x4 = 3 = b) Now use MATLAB's inverse function to solve the system.

Answers

disp(x) will display the values of x₁, x₂, x₃ and x₄.

To solve the given system of equations using MATLAB's backslash operator and inverse function, you can follow these steps:

Step 1:

Define the coefficient matrix (A) and the right-hand side vector (b):

A = [1, 4, -2, 3; -1, 0, 2, 0; 1, 2, -3, 0; 1, 0, -2, 1];

b = [3; 4; 0; 3];

Step 2: Solve the system using the backslash operator ():

x = A \ b;

The solution vector x will contain the values of x₁, x₂, x₃, and x₄.

Step 3: Display the solution:

disp(x);

This will display the values of x₁, x₂, x₃, and x₄.

To solve the system using the inverse function, you can follow these steps:

Step 1: Calculate the inverse of the coefficient matrix ([tex]A_{inv[/tex]):

[tex]A_{inv[/tex] = inv(A);

Step 2: Multiply the inverse of A with the right-hand side vector (b) to obtain the solution vector (x):

x = [tex]A_{inv[/tex] * b;

Step 3: Display the solution:

disp(x);

This will display the values of x₁, x₂, x₃, and x₄.

To know more about coefficient, visit

https://brainly.com/question/13431100

#SPJ11

EXPLORE & REASON Jae makes a playlist of 24 songs for a party. Since he prefers country and rock music, he builds the playlist from those two types of songs. Playlist Country 1 Country 2 Rock 3 Rock 4 Country 5 Rock 6 Country 7 Rock 8 Rock 9 A Country 10 Rock 11 Country 12 need 78% Rock 14 Country 15 ✅Country 16 Rock 17 Rock 18 Country 19 Rock 20 Country 21 Rock 23 Country 24 Country 25 Country 26 A. Determine two different combinations of country and rock songs that Jae could use for his playlist. B. Plot those combinations on graph paper. Extend a line through the points. C. Model With Mathematics Can you use the line to find other meaningful points? Explain. MP.4 2-3 Standard Form HABITS OF MIND Use Appropriate Tools Why is it helpful to use a graph rather than a table to answer the question? Are there any disadvantages to using a graph? C MP.5​

Answers

A. Let's find two different combinations of country and rock songs for Jae's playlist:

Combination 1:
Country 1, Country 2, Rock 3, Rock 4, Country 5, Rock 6, Country 7, Rock 8, Rock 9, Country 10, Rock 11, Country 12

Combination 2:
Rock 14, Country 15, Country 16, Rock 17, Rock 18, Country 19, Rock 20, Country 21, Rock 23, Country 24

B. To plot these combinations on a graph, we can use a scatter plot. We'll represent country songs on the x-axis and rock songs on the y-axis. Each combination will be represented by a point on the graph.

Combination 1: (12, 9), (0, 0), (9, 11), (7, 6), (4, 4), (3, 2), (7, 3), (2, 8), (8, 5), (3, 9), (10, 1), (5, 7)

Combination 2: (0, 14), (6, 15), (5, 16), (7, 17), (8, 18), (9, 19), (0, 20), (11, 21), (3, 23), (14, 24)

C. By extending a line through the points on the graph, we can use the line to estimate other meaningful points, such as additional combinations of country and rock songs for Jae's playlist. These points could represent different proportions of country and rock songs.

Using the line, we can approximate the number of rock songs for a given number of country songs or vice versa. This allows us to visualize different combinations and make informed choices based on the desired mix of country and rock songs for the playlist.

Using a graph is helpful because it provides a visual representation of the data, making it easier to identify patterns, trends, and relationships between variables. It allows us to see the overall distribution and make estimations or predictions. Additionally, it provides a clear and concise representation of the information.

However, there can be disadvantages to using a graph. Depending on the complexity of the data, a graph may not capture all the detailed information compared to a table. It can sometimes oversimplify the data and may not be suitable for precise calculations or comparisons. Additionally, if the graph is not properly labeled or scaled, it can lead to misinterpretations or inaccurate conclusions.

QUESTION 2 A simply supported beam has an effective span of 10 m and is subjected to a characteristic dead load of 8 kN/m and a characteristic imposed load of 5 kN/m. The concrete is a C35. Design the beam section in which located below ground, and the beam wide is limited to 200 mm.

Answers

Given that the simply supported beam has an effective span of 10 m and is subjected to a characteristic dead load of 8 kN/m and a characteristic imposed load of 5 kN/m. The concrete is a C35. We have to design the beam section located below the ground, and the beam width is limited to 200 mm.

The section of the beam located below the ground is known as a substructure, and the top of the substructure is called the superstructure or deck.The maximum bending moment at the midspan can be calculated as; M =\frac{w_{total} l^2}{8} Where;w_total = w_dead + w_imposedl = effective span of the beam= 10 m The characteristic dead load is 8 kN/m and the characteristic imposed load is 5 kN/m.  Let's assume we use reinforcement bars of 20 mm diameter.Hence, minimum depth required would be, 0.755 + 0.02 = 0.775 m.The section of the beam can be determined by assuming the width and depth of the beam. Let's assume the width of the beam as 200 mm.

Therefore, the effective depth of the beam would be; d = 0.775 \ m We can now calculate the area of the steel required to resist the bending moment using the formula; A_s = \frac{M}{\sigma_{st}jd}

Where;σst = 500 MPa (steel stress at yield)j = 0.9 (reinforcement factor)

A_s = \frac{162.5 \times 10^6}{500 \times 0.9 \times 0.775}

A_s = 475.3 \ mm^2 We can use 4 bars of 20 mm diameter for the steel reinforcement. Therefore, the area of steel we get would be; A_s = 4 \times \frac{\pi}{4} \times 20^2 = 1256.64 \ mm^2 We can use four bars of 20 mm diameter with 200 mm width and 0.775 m depth of the beam to withstand the maximum bending moment. Therefore, the beam section required to withstand the bending moment with a 200 mm width and 0.775 m depth is 4-20 mm diameter bars.

To know more about effective span visit:

https://brainly.com/question/32261594

#SPJ11

For the following equilibrium, indicate which of the following actions would NOT disturb the equilibrium:
HNO2 (aq)+H2O(l)<= H3O^ + (aq)+NO2^- (aq)
a) Add HNO2
b) Increase the concentration of H30
c) Add NaNO2
d) Decrease the concentration of NO2^- e) Add NaNO3(s)

Answers

For the given equilibrium: HNO₂ (aq)+H₂O(l) ⇌ H₃O⁺ (aq)+NO₂⁻ (aq) option (b) Increase the concentration of H₃O⁺ would NOT disturb the equilibrium.

The increase in H₃O⁺ ion concentration would result in the shift of the equilibrium towards NO₂⁻ and H₃O⁺ ions. Since the increase in the H₃O⁺ ion concentration occurs on the products' side of the equation, the shift will oppose the change, resulting in the formation of HNO₂ and H₂O, bringing the system back to equilibrium. This change will result in the establishment of a new equilibrium position with a higher concentration of NO₂⁻ and H₃O⁺ ions. The change in concentration, pressure, and temperature causes the system to shift to a new equilibrium position. These factors result in a change in the rate of forward and reverse reactions, which will affect the concentration of reactants and products.

Concentration changes can occur due to adding or removing a reactant or a product, while pressure changes can occur due to a change in the volume of the container. Temperature changes can occur due to the heating or cooling of the reaction vessel.

Option (a) Add HNO₂: Adding more HNO₂, a reactant, would result in the equilibrium shifting towards the products' side to achieve equilibrium. The addition of HNO₂ would increase the concentration of HNO₂, decreasing the concentration of NO₂⁻ ions. The shift will continue until a new equilibrium position is established, leading to more H₃O⁺ ions and NO₂⁻ ions.

Option (c) Add NaNO₂: NaNO₂ is a salt that has no effect on the reaction, as it is a spectator ion. The addition of NaNO₂ would cause no disturbance in the equilibrium of the reaction.

Option (d) Decrease the concentration of NO₂⁻: The decrease in the concentration of NO₂⁻ would cause the equilibrium to shift towards NO₂⁻ ions' side to achieve equilibrium. The decrease in the concentration of NO₂⁻ ions would increase the concentration of HNO₂ and H₂O molecules. The equilibrium would shift towards the side with fewer products to compensate for the change.

Option (e) Add NaNO₃(s): The addition of NaNO₃(s) would not cause any effect on the equilibrium of the reaction as it is in the solid state. The reaction would continue to maintain its equilibrium position.

To know more about concentration, visit:

brainly.com/question/30862855

#SPJ11

What is the missing step in this proof?
A.
∠CAB ≅ ∠ACB, ∠EDB ≅ ∠DEB
B.
∠ADE ≅ ∠DBE, ∠CED ≅ ∠EBD
C.
∠CAD ≅ ∠ACE, ∠ADE ≅ ∠CED
D.
∠CAB ≅ ∠EDB, ∠ACB ≅ ∠DEB

Answers

D. ∠CAB ≅ ∠EDB, ∠ACB ≅ ∠DEB (corresponding angles formed by transversals AC and DE with lines AB and EB, and transversals AC and DE with lines CB and DB, respectively).

In order to determine the missing step in the proof, we need to analyze the given information and identify the corresponding congruent angles. Let's evaluate the options provided:

A. ∠CAB ≅ ∠ACB, ∠EDB ≅ ∠DEB

B. ∠ADE ≅ ∠DBE, ∠CED ≅ ∠EBD

C. ∠CAD ≅ ∠ACE, ∠ADE ≅ ∠CED

D. ∠CAB ≅ ∠EDB, ∠ACB ≅ ∠DEB

Looking at the given information, we observe that the congruent angles are:

∠CAB ≅ ∠ACB (corresponding angles formed by transversal AC and lines AB and CB)

∠EDB ≅ ∠DEB (corresponding angles formed by transversal DE and lines EB and DB)

Comparing these angles to the options, we find that option D, ∠CAB ≅ ∠EDB, ∠ACB ≅ ∠DEB, is the missing step in the proof.

Therefore, the missing step in the proof is:

D. ∠CAB ≅ ∠EDB, ∠ACB ≅ ∠DEB

This missing step indicates the congruence between the angles formed by transversals AC and DE with lines AB and EB, as well as the angles formed by transversals AC and DE with lines CB and DB, respectively.

For similar question on transversals.

https://brainly.com/question/24607467

#SPJ8

Calculate the The maximum normal stress in steel a plank and ONE 0.5"X10" steel plate. Ewood 20 ksi and E steel-240ksi Copyright McGraw-Hill Education Permission required for reproduction or display 10 in. 3 in. in. 3 in.

Answers

The maximum normal stress in the steel plank is 5 lbf/in², and the maximum normal stress in the 0.5"X10" steel plate is 30 lbf/in².

To calculate the maximum normal stress in a steel plank and a 0.5"X10" steel plate, we need to consider the given information: Ewood (modulus of elasticity of wood) is 20 ksi and Esteel (modulus of elasticity of steel) is 240 ksi.

To calculate the maximum normal stress, we can use the formula:

σ = P/A

where σ is the stress, P is the force applied, and A is the cross-sectional area.

Let's calculate the maximum normal stress in the steel plank first.

We have the dimensions of the plank as 10 in. (length) and 3 in. (width).

To find the cross-sectional area, we multiply the length by the width:

A_plank = length * width = 10 in. * 3 in. = 30 in²

Now, let's assume a force of 150 lb is applied to the plank.

Converting the force to pounds (lb) to pounds-force (lbf), we have:

P_plank = 150 lb * 1 lbf/1 lb = 150 lbf

Now we can calculate the maximum normal stress in the steel plank:

σ_plank = P_plank / A_plank

σ_plank = 150 lbf / 30 in² = 5 lbf/in²

The maximum normal stress in the steel plank is 5 lbf/in².

Now let's move on to calculating the maximum normal stress in the 0.5"X10" steel plate.

The dimensions of the plate are given as 0.5" (thickness) and 10" (length).

To find the cross-sectional area, we multiply the thickness by the length:

A_plate = thickness * length = 0.5 in. * 10 in. = 5 in²

Assuming the same force of 150 lb is applied to the plate, we can calculate the maximum normal stress:

σ_plate = P_plate / A_plate

σ_plate = 150 lbf / 5 in² = 30 lbf/in²

The maximum normal stress in the 0.5"X10" steel plate is 30 lbf/in².

So, the maximum normal stress in the steel plank is 5 lbf/in², and the maximum normal stress in the 0.5"X10" steel plate is 30 lbf/in².

Learn more about modulus of elasticity from this link:

https://brainly.com/question/31083214

#SPJ11

Complete as a conditional proof
1. ~H ⊃ ~G 2. (Rv H)⊃K /~k⊃(G⊃R)
Complete as a indirect or conditional proof
1. ~H ⊃ ~G 2. (Rv H)⊃K /~k⊃(G⊃R)

Answers

To complete the conditional proof, we need to assume the antecedent of the desired conclusion as a temporary assumption, and then derive the consequent. Let's follow the steps:
1. ~H ⊃ ~G  (Assumption)
2. (RvH) ⊃ K (Assumption)

To prove ~k ⊃ (G ⊃ R), we'll assume ~k as a temporary assumption and derive (G ⊃ R) from it.
3. ~k (Assumption)
Now, we can use conditional proof to derive (G ⊃ R) under the temporary assumption of ~k.
4. Assume G (Temporary assumption)
5. From ~H ⊃ ~G (line 1) and ~k (line 3), by modus tollens, we can derive ~H.
6. From (RvH) ⊃ K (line 2) and (RvH) (Disjunction introduction with R), by modus ponens, we can derive K.
7. From ~H (line 5) and (RvH) (Disjunction introduction with H), by disjunctive syllogism, we can derive R.
8. From G (line 4) and R (line 7), by conditional introduction, we can derive (G ⊃ R).
9. End of subproof for assumption G.
Since we have derived (G ⊃ R) under the assumption of G, we can use conditional proof to derive ~k ⊃ (G ⊃ R).
10. From ~k (line 3) and (G ⊃ R) (line 8), by conditional introduction, we can derive ~k ⊃ (G ⊃ R).
11. End of subproof for assumption ~k.
Therefore, by completing the conditional proof, we have shown that ~k ⊃ (G ⊃ R).

Learn more about conditional proof:

https://brainly.com/question/33164321

#SPJ11

Q4. You are given the following array: ARRAY  10 20 30 40 50 60 70 In the above-mentioned array, which values indicating the best case, average case, and worst case. Also mention the total number of key comparisons required in each case if you are applying
(a) Linear Search
(b) Binary Search

Answers

In the given array [10, 20, 30, 40, 50, 60, 70], the best case, average case, and worst case scenarios for both linear search and binary search can be determined based on the position of the target element being searched. The total number of key comparisons required in each case will also vary depending on the search algorithm used.

Linear Search:

Best Case: The best case scenario for linear search occurs when the target element is found at the very first position in the array. In this case, only one comparison is needed.

Average Case: In the average case, the target element is found in the middle of the array. On average, it would require (n+1)/2 comparisons, where n is the length of the array.

Worst Case: The worst case scenario for linear search occurs when the target element is either not present in the array or it is located at the last position. In this case, n comparisons are needed, where n is the length of the array.

Binary Search:

Best Case: The best case scenario for binary search occurs when the target element is found exactly in the middle of the sorted array. In this case, only one comparison is needed.

Average Case: In the average case, the target element can be located at any position in the array. On average, it would require log2(n)+1 comparisons, where n is the length of the array.

Worst Case: The worst case scenario for binary search occurs when the target element is either not present in the array or it is located at one of the ends. In this case, log2(n)+1 comparisons are needed, where n is the length of the array.

Therefore, in the given array, the best case, average case, and worst case scenarios and the total number of key comparisons required will differ for linear search and binary search based on the position of the target element.

To learn more about search algorithm visit:

brainly.com/question/32199005

#SPJ11

Part A What volume of a 15.0% by mass NaOH solution, which has a density of 1.116 g/mL, should be used to make 4.65 L of an NaOH solution with a pH of 10.0? Express your answer to three significant figures and include the appropriate units.

Answers

you can plug in the values and calculate the volume of the 15.0% NaOH solution needed to make a 4.65 L NaOH solution with a pH of 10.0.

To determine the volume of the 15.0% NaOH solution needed to make a 4.65 L solution with a pH of 10.0, we need to consider the molarity of the NaOH solution and its dilution. Here are the steps to calculate it:

1. Calculate the molarity of the NaOH solution needed:

  pH = 14 - pOH

  Given pH = 10.0

  pOH = 14 - 10.0 = 4.0

  pOH = -log[OH-]

  [OH-] = 10^(-pOH) M

  Since NaOH is a strong base, it completely dissociates in water:

  NaOH → Na+ + OH-

  So, the concentration of NaOH is equal to the concentration of OH- ions.

  [NaOH] = [OH-] = 10^(-pOH) M

2. Calculate the moles of NaOH needed for the 4.65 L solution:

  Moles of NaOH = [NaOH] × volume of NaOH solution

3. Calculate the mass of NaOH needed for the moles calculated in step 2:

  Mass of NaOH = Moles of NaOH × molar mass of NaOH

4. Calculate the mass of the 15.0% NaOH solution:

  Mass of NaOH solution = Mass of NaOH / (mass fraction of NaOH)

5. Calculate the volume of the 15.0% NaOH solution using its density:

  Volume of NaOH solution = Mass of NaOH solution / density of NaOH solution

To know more about fraction visit:

brainly.com/question/10708469

#SPJ11

Point P1 located along the proposed centerline of a roadway was observes from an instrument set up at point A. The observed bearing and distance are N 50°34' W; 78.67m Coordinates of A: Northings = 257.78m Eastings = 345.25m Centerline P1 14. Determine the coordinate of P1 (Northing). a) 319.34 b) 298.67 15. Determine the coordinate of P1 (Easting). a) 303.45 b) 245.67 •A Instrument set up c) 312.34 c) 284.49 d) 307,45 d) 310.67

Answers

The coordinate of point P1 (Northing) is 312.84m, and the coordinate of point P1 (Easting) is 276.99m.

To determine the coordinates of point P1, we can use the observed bearing and distance from point A. The observed bearing is N 50°34' W, which means that the angle between the line connecting point A to point P1 and the north direction is 50 degrees and 34 minutes towards the west.

First, let's convert the observed bearing into decimal degrees. To do this, we add the degrees and the minutes:

50° + 34' = 50.57°

Next, we need to calculate the change in coordinates (northing and easting) from point A to point P1 using the observed distance of 78.67m.

To calculate the change in northing, we multiply the distance by the cosine of the observed bearing angle:

Change in northing = 78.67m * cos(50.57°)

To calculate the change in easting, we multiply the distance by the sine of the observed bearing angle:

Change in easting = 78.67m * sin(50.57°)

Now, let's calculate the coordinates of point P1 by adding the change in northing and easting to the coordinates of point A:

Northing of P1 = Northing of A + Change in northing
Easting of P1 = Easting of A + Change in easting

Using the given coordinates of point A:
Northings = 257.78m
Eastings = 345.25m

We can substitute the values into the equations:

Northing of P1 = 257.78m + Change in northing
Easting of P1 = 345.25m + Change in easting

Calculating the changes in northing and easting using a calculator, we get:

Change in northing = 55.06m
Change in easting = -68.26m

Substituting the values back into the equations, we can calculate the coordinates of point P1:

Northing of P1 = 257.78m + 55.06m = 312.84m
Easting of P1 = 345.25m - 68.26m = 276.99m

Therefore, Point P1's Northing coordinate is 312.84 metres, while its Easting coordinate is 276.99 metres.

learn more about coordinates from given link

https://.com/question/27996657

#SPJ11

3. Explain why Fe- and Al oxides are more reactive than Si- and
Ti-oxides.

Answers

Fe (iron) and Al (aluminum) oxides are generally more reactive than Si (silicon) and Ti (titanium) oxides due to differences in their electronic structure and bonding characteristics.

Why are they more reactive?

Electronic Structure: Fe and Al have relatively low electronegativity compared to Si and Ti. This means that Fe and Al are more prone to losing electrons and forming positive charges (cations), while Si and Ti have a higher tendency to gain electrons and form negative charges (anions).

Bonding Characteristics: Fe and Al oxides typically form ionic bonds with oxygen, while Si and Ti oxides tend to form more covalent bonds. Ionic bonds involve the complete transfer of electrons from the metal to the oxygen, resulting in a strong electrostatic attraction between the oppositely charged ions.

Learn more about Aluminum oxides at

https://brainly.com/question/30451292

#SPJ4

i need help please!!

Answers

Answer:

  4298.66 ft²

Step-by-step explanation:

You want the area of a circle with diameter 74 ft.

Area

The area of a circle is given by ...

  A = πr²

where r is the radius, or half the diameter. In terms of diameter, this is ...

  A = π(d/2)² = (π/4)d²

Application

The area of the circle with diameter 74 ft is ...

  A = (3.14/4)(74 ft)² = 4298.66 ft²

The area of the circle is about 4298.66 ft².

<95141404393>

Formaldehyde can be formed by the partial oxidation of natural gas using pure oxygen. The natural gas must be in large excess. CH4 + 0₂ →>>> CH2O + H2O The CH4 is heated to 400C and the O₂ to 300C and introduced into a reaction chamber. The products leave at 600C and show an orsat analysis of CO₂ 1.9 %, CH₂O 11.7 %, O₂ 3.8 %, and CH4 82.6%. How much heat is removed from the reaction chamber per 1000 kg of formaldehyde produced?

Answers

The amount of heat absorbed by the reaction chamber is + 97257.35 J per 1000 kg of formaldehyde produced. Therefore, option B is the correct answer.

Given that Formaldehyde can be formed by the partial oxidation of natural gas using pure oxygen. The natural gas must be in large excess and the balanced chemical equation is:

CH4 + 0₂ → CH2O + H2O

It is also given that the products leave at 600C and show an orsat analysis of CO₂ 1.9 %, CH₂O 11.7 %, O₂ 3.8 %, and CH4 82.6%. We have to determine the amount of heat that is removed from the reaction chamber per 1000 kg of formaldehyde produced.

To solve the given problem, we can follow the steps given below:

Step 1: Determine the amount of CH4 that reacts for the formation of 1000 kg of formaldehyde.

Molar mass of CH4 = 12.01 + 4(1.01) = 16.05 g/mol

Molar mass of CH2O = 12.01 + 2(1.01) + 16.00 = 30.03 g/mol

1000 kg of CH2O is produced by reacting CH4 in a 1:1 mole ratio

Therefore, 1000 g of CH2O is produced by reacting 16.05 g of CH416.05 g of CH4 produces

= 30.03 g of CH2O1 g of CH4 produces

= 30.03 / 16.05 = 1.87 g of CH2O1000 kg of CH2O is produced by reacting

= 1000/1.87 = 534.76 kg of CH4

Step 2: Determine the amount of heat absorbed in the reaction chamber by the reactants.

The heat of formation of CH4 is -74.8 kJ/mol

Heat of formation of CH2O is -115.9 kJ/mol

∴ ΔH for the reaction CH4 + 0₂ → CH2O + H2O is given by:

ΔH = [Σ n ΔHf (products)] - [Σ n ΔHf (reactants)]

Reactants are CH4 and O2 and their moles are equal to 534.76 and 0.94 (3.8/100 * 1000/32) respectively.

Products are CH2O, H2O, CO2 and their moles are equal to 534.76, 534.76 and 19.00 (1.9/100 * 1000/44) respectively.

ΔH = [(534.76 × -115.9) + (534.76 × 0) + (19.00 × -393.5)] - [(534.76 × -74.8) + (0.94 × 0)]ΔH = -97257.35 J

Heat evolved = -97257.35 J

Heat absorbed = + 97257.35 J

The amount of heat absorbed by the reaction chamber is + 97257.35 J per 1000 kg of formaldehyde produced. Therefore, option B is the correct answer.

Learn more about reaction chamber visit:

brainly.com/question/32015167

#SPJ11

Based on the scale factor, what fraction of the original shaded region shouldbe contained in the scaled copy at the top?

Answers

The fraction of the original shaded region contained in the scaled copy at the top is equal to the square of the scale factor.

The fraction of the original shaded region contained in the scaled copy at the top can be determined by examining the relationship between the scale factor and the area of a shape.

Let's assume that the original shaded region is a two-dimensional shape, such as a rectangle.

When an object is scaled up or down, the area of the shape changes proportionally to the square of the scale factor. In other words, if the scale factor is k, then the area of the scaled shape is [tex]k^2[/tex] times the area of the original shape.

To find the fraction of the original shaded region contained in the scaled copy, we need to compare the areas of the shaded region in both the original and scaled copies.

Let's denote the area of the original shaded region as A_orig and the area of the scaled shaded region as A_scaled.

Given that A_scaled = [tex]k^2[/tex] * A_orig, where k is the scale factor, the fraction of the original shaded region contained in the scaled copy is A_scaled / A_orig = [tex]k^2[/tex] * A_orig / A_orig = [tex]k^2[/tex].

For more such questions on scale,click on

https://brainly.com/question/25722260

#SPJ8

7. Answer the following questions of activated sludge system. a) Sketch out a unit operation diagram for a typical wastewater treatment plant with nitrogen and phosphorus removal capability. Include both the water treatment process and the sludge treatment process. b) Give 1 sentence description of the function of each process. c) What is the main sludge management approach in New York State?

Answers

The main sludge management approach in New York State is the beneficial use of sludge.

In New York State, the main sludge management approach is focused on the beneficial use of sludge. Beneficial use refers to the utilization of sludge as a resource rather than simply disposing of it. This approach aims to extract value from the sludge by finding beneficial applications for its use.

Sludge is a byproduct of the wastewater treatment process and contains a mixture of organic and inorganic materials. Instead of treating sludge as waste, it can be treated and processed to make it suitable for various beneficial uses. This approach aligns with the principles of sustainability, resource recovery, and environmental stewardship.

One common method of beneficial use is land application, where treated sludge is applied to agricultural land as a soil conditioner and fertilizer. This helps improve soil quality, enhance crop growth, and reduce the need for synthetic fertilizers. Another approach is using sludge as a feedstock for anaerobic digestion, a process that produces biogas for energy generation. The biogas can be used for electricity production or as a renewable natural gas.

The beneficial use of sludge reduces the reliance on landfill disposal and promotes the circular economy by closing the loop on resource utilization. It is a sustainable approach that contributes to waste reduction, resource recovery, and environmental protection.

Learn more about New York State.
brainly.com/question/30725335

#SPJ11

The W21 x 201 columns on the ground floor of the 5-story shopping mall project are fabricated by welding a 12.7 mm by 100 mm cover plate to one of its flanges. The effective length is 4.60 meters with respect to both axes. Assume that the components are connected in such a way that the member is fully effective. Use A36 steel. Compute the column strengths in LRFD and ASD based on flexural buckling.

Answers

The W21 x 201 columns on the ground floor of the shopping mall project are fabricated by welding a 12.7 mm by 100 mm cover plate to one of its flanges. The effective length of the column is 4.60 meters with respect to both axes. The column is made of A36 steel. We need to compute the column strengths in LRFD and ASD based on flexural buckling.



To compute the column strengths, we first need to determine the critical buckling load. The critical buckling load is the load at which the column will buckle under compression.

In LRFD (Load and Resistance Factor Design), the column strength is calculated as the resistance factor times the critical buckling load. The resistance factor for A36 steel in compression is 0.90.

In ASD (Allowable Stress Design), the column strength is calculated as the allowable stress times the cross-sectional area of the column. The allowable stress for A36 steel is 0.60 times the yield strength.

To calculate the critical buckling load, we need to determine the effective length factor (K) and the slenderness ratio (λ). The effective length factor (K) depends on the end conditions of the column. In this case, since the column is fully effective, the effective length factor is 1.0 for both axes.

The slenderness ratio (λ) is calculated by dividing the effective length of the column by the radius of gyration (r). The radius of gyration can be determined using the formula:

[tex]r = \sqrt{(I/A)}[/tex]

Where I is the moment of inertia of the column and A is the cross-sectional area of the column.

Once we have the slenderness ratio (λ), we can use it to calculate the critical buckling load using the following formula:

[tex]Pcr = (\pi ^2 * E * I) / (K * L)^2\\[/tex]

Where E is the modulus of elasticity of the steel, I is the moment of inertia, K is the effective length factor, and L is the effective length of the column.

Finally, we can calculate the column strength in LRFD and ASD.

In LRFD:
Column strength = Resistance factor * Critical buckling load

In ASD:
Column strength = Allowable stress * Cross-sectional area of the column

By following these steps, we can compute the column strengths in LRFD and ASD based on flexural buckling for the given shopping mall project.

To know more about FABRICATED: https://brainly.com/question/30525487

#SPJ11

Mia and Xan are having a debate. Mia is assigned the affirmative side, and Xan is assigned the negative side. The
debate begins with Mia presenting the affirmative case. Order the steps that the rest of the debate should follow.
Mia asks questions
Mia has final words
Xan asks questions
Xan presents
negative case
Xan gives rebuttal
Mia gives rebuttal

Answers

The specific order of these steps may vary depending on the debate format and rules.

The provided order is a typical sequence that is commonly followed in debates.

The order of steps that the rest of the debate should follow is as follows:

Xan presents negative case:

After Mia presents the affirmative case, it is Xan's turn to present the negative case.

Xan will present their arguments and evidence against the affirmative position.

Mia gives rebuttal:

After Xan presents the negative case, Mia will have the opportunity to respond with a rebuttal.

Mia can address the points raised by Xan and counter-argue to support the affirmative position.

Xan gives rebuttal:

Following Mia's rebuttal, it is Xan's turn to provide a rebuttal.

Xan can address the points made by Mia in her rebuttal and counter-argue to support the negative position.

Mia asks questions:

After the rebuttals, Mia has the opportunity to ask questions to Xan.

Mia can use this time to clarify any unclear points, challenge Xan's arguments, or seek further information to strengthen the affirmative position.

Xan asks questions:

Following Mia's questioning period, Xan also has the opportunity to ask questions to Mia.

Xan can use this time to seek clarification, challenge Mia's arguments, or gather additional information to support the negative position.

Mia has final words:

The debate concludes with Mia having the final opportunity to summarize her arguments and reinforce the affirmative position.

Mia can make a closing statement, emphasizing key points, and providing a strong conclusion to support her case.

For similar questions on debate

https://brainly.com/question/30443608

#SPJ8

A B As a project Manager, your company is required to present a programme of works as part of the requirements to Tender. The project to which the Tender is being submitted is the construction of a 5km road and it involves the construction of a culvert. a. List FOUR construction activities to be undertaken for construction of the culvert. b. Develop a table of activities, duration and activity dependency for the activities in (a) above. c. Determine the total duration of the project.

Answers

The total duration of the project is 17 days.

a. Four construction activities for the construction of the culvert:

Excavation: This involves digging and removing the soil to create a trench for the culvert.

Formwork and Reinforcement: Building the formwork, which acts as a mold, and placing reinforcement steel bars within the formwork to provide strength to the culvert.

Concrete Pouring: Pouring the concrete mixture into the formwork to create the culvert structure.

Curing and Finishing: Allowing the concrete to cure and applying any necessary finishing touches to the culvert, such as smoothing the surface or adding protective coatings.

b. Table of activities, duration, and activity dependency:

Activity Duration (in days) Dependency

Note: The activity dependency indicates that the listed activities must be completed before the dependent activity can begin.

c. To determine the total duration of the project, we need to consider the critical path, which is the longest path of dependent activities in the project schedule. In this case, the critical path is:

Excavation -> Formwork and Reinforcement -> Concrete Pouring -> Curing and Finishing

The total duration of the project is the sum of the durations of activities along the critical path:

Total Duration = Duration of Excavation + Duration of Formwork and Reinforcement + Duration of Concrete Pouring + Duration of Curing and Finishing

= 3 + 5 + 2 + 7

= 17 days

Therefore, the total duration of the project is 17 days.

To know more about total visit

https://brainly.com/question/25271817

#SPJ11

True or false:
Need asap

Answers

Answer:

True, i believe

Step-by-step explanation:

What is the surface area of the sphere below?

IF YOU GIVE ME THE RIGHT ANSWER, I WILL YOU BRAINLEST!!

Answers

4πr2
The surface area of this sphere is ^^^

What is the reducing agent and what is reduced in the following
reaction: ClO2- (aq) +
N2H4 (g) = NO (g) + Cl2 (g)

Answers

A reducing agent refers to an element or compound that transfers electrons to another species in an oxidation-reduction reaction. The reducing agent is itself oxidized while reducing another species.The reaction between ClO2 and N2H4 forms NO and Cl2.

In this reaction, N2H4 is acting as the reducing agent while ClO2 is getting reduced. When N2H4 transfers two electrons to ClO2, it is reduced to Cl2, and N2H4 gets oxidized to NO, as follows:ClO2-(aq) + N2H4(g) → NO(g) + Cl2(g)This reaction involves the oxidation of N2H4 to NO and the reduction of ClO2 to Cl2. The reaction is classified as a redox reaction because there is a transfer of electrons between the reactants.

In the given reaction, N2H4 acts as the reducing agent. When N2H4 transfers two electrons to ClO2, it is reduced to Cl2, and N2H4 gets oxidized to NO. The reaction between ClO2 and N2H4 forms NO and Cl2.

To know more about reducing agent visit:-

https://brainly.com/question/2890416

#SPJ11

If there are 45.576 g of C in a sample of
C2H5OH, then what is the mass of H in the
sample?
Molar masses: C = 12.01 g mol-1 H = 1.008 g
mol-1

Answers

The mass of H in the sample of [tex]C_2H_5OH[/tex]is approximately 1.9935 grams.

To find the mass of H in the sample of [tex]C_2H_5OH[/tex], we need to use the given mass of C and the molecular formula of ethanol ([tex]C_2H_5OH[/tex]).

The molar mass of [tex]C_2H_5OH[/tex]can be calculated by summing the molar masses of each element in the formula:

Molar mass of [tex]C_2H_5OH[/tex]= (2 * molar mass of C) + (6 * molar mass of H) + molar mass of O

= (2 * 12.01 g/mol) + (6 * 1.008 g/mol) + 16.00 g/mol

= 24.02 g/mol + 6.048 g/mol + 16.00 g/mol

= 46.068 g/mol

Now, we can use the molar mass of [tex]C_2H_5OH[/tex]to calculate the moles of C in the sample:

moles of C = mass of C / molar mass of C

= 45.576 g / 46.068 g/mol

= 0.9894 mol

Since the molecular formula of [tex]C_2H_5OH[/tex]indicates that there are 2 moles of H for every 1 mole of C, we can determine the moles of H in the sample:

moles of H = 2 * moles of C

= 2 * 0.9894 mol

= 1.9788 mol

Finally, we can calculate the mass of H in the sample:

mass of H = moles of H * molar mass of H

= 1.9788 mol * 1.008 g/mol

= 1.9935 g

For more such question on sample visit:

https://brainly.com/question/24466382

#SPJ8

Final answer:

The mass of hydrogen in the given sample can be determined by first finding the moles of carbon, then using the ratio of carbon to hydrogen in the molecular formula to calculate the moles of hydrogen, and finally calculating the mass of hydrogen from its molar mass. The final answer is approximately 11.45 g.

Explanation:

To find the mass of hydrogen (H) in the sample, we first need to find the moles of carbon (C) because the sample of ethanol (C2H5OH) has two moles of carbon for every six moles of hydrogen. Given the molar mass of carbon (C) is 12.01 g mol-1, we can calculate moles of carbon as 45.576 g ÷ 12.01 g mol-1 which is approximately 3.79 moles.

In ethanol molecule (C2H5OH), for every 2 moles of carbon there are 6 moles of hydrogen. So if we have 3.79 moles of carbon, there will be approximately 11.37 moles of hydrogen (3.79 moles * 6 ÷ 2).

Now, we can find the mass of hydrogen by multiplying the moles of hydrogen by the molar mass of hydrogen. Given that the molar mass of hydrogen (H) is 1.008 g mol-1, this calculation gives 11.45 g (11.37 moles * 1.008 g mol-1).

So, the mass of hydrogen in the sample is approximately 11.45 g.

Learn more about Mass of Hydrogen here:

https://brainly.com/question/32235070

#SPJ11

Imagine that you took a road trip. Based on the information in the table, what was the average speed of your car? Express your answer to three significant figures and include the appropriate units. Use mi as an abbreviation for miles, and h for hours, or mph can be used to indicate miles per hour. X Incorrect; Try Again; 5 attempts remaining What is the average rate of formation of Br_2? Express your answer to three decimal places and include the appropriate units.

Answers

The average speed of the car is 28.6 mph

Given data:

To calculate the average speed of your car, we need to determine the total distance traveled and the total time taken. Based on the information provided in the table:

Initial time: 3:00 PM

Initial mile marker: 18

Final time: 8:00 PM

Final mile marker: 161

To calculate the total distance traveled, we subtract the initial mile marker from the final mile marker:

Total distance = Final mile marker - Initial mile marker

Total distance = 161 mi - 18 mi

Total distance = 143 mi

To calculate the total time taken, we subtract the initial time from the final time:

Total time = Final time - Initial time

Total time = 8:00 PM - 3:00 PM

Total time = 5 hours

Now, calculate the average speed using the formula:

Average speed = Total distance / Total time

Average speed = 143 mi / 5 h

Average speed ≈ 28.6 mph

Hence, the average speed of your car on the road trip is approximately 28.6 mph (miles per hour).

To learn more about speed click :

https://brainly.com/question/19930939

#SPJ4

The complete question is attached below:

Imagine that you took a road trip. Based on the information in the table, what was the average speed of your car? Express your answer to three significant figures and include the appropriate units. Use mi as an abbreviation for miles, and h for hours, or mph can be used to indicate miles per hour.

Which inequality has a solid boundary line when graphed?
y<-x-9
y< 1/9x+9
y>-1/9x
y>=9x+9

Answers

The inequality that has a solid boundary line when graphed is y ≥ 9x + 9 (option d).

1. The inequality y < -x - 9 has a dashed boundary line when graphed. The symbol "<" indicates that the line is not included in the solution set, hence the dashed line.

2. The inequality y < (1/9)x + 9 also has a dashed boundary line when graphed. Similar to the previous inequality, the "<" symbol implies that the line is not part of the solution set, resulting in a dashed line.

3. The inequality y > -(1/9)x does not have a solid boundary line when graphed. The ">" symbol signifies that the line is not included in the solution set, resulting in a dashed line.

4. The inequality y ≥ 9x + 9 has a solid boundary line when graphed. The "≥" symbol indicates that the line is part of the solution set, leading to a solid line.

Graphically, the solid boundary line in the fourth inequality represents all the points on the line itself, including the line. The inequality y ≥ 9x + 9 includes all the points above and on the line.

For more such questions on inequality, click on:

https://brainly.com/question/30238989

#SPJ8

The ages of a group of 146 randomly selected adult females have a standard deviation of 17.5 years. Assume that the ages of female statistics students have less variation than ages of females in the general population, so let σ=17.5 years for the sample size calculation. How many female statistics student ages must be obtained in order to estimate the mean age of all female statistics students? Assume that we want 90% confidence that the sample mean is within one-half year of the population mean. Does it seem reasonable to assume that the ages of female statistics students have less variation than ages of females in the general population? The required sample size is (Round up to the nearest whole number as needed.)

Answers

According to the information given, rounding up to the nearest whole number, the required sample size is 3314.

To determine the required sample size for estimating the mean age of all female statistics students, we can use the formula:

n = [(Z * σ) / E]^2

Where:

n = required sample size

Z = Z-score corresponding to the desired confidence level (in this case, 90% confidence)

σ = assumed standard deviation

E = margin of error

In this case, the margin of error is 0.5 years.

Given information:

σ = 17.5 years

Desired confidence level = 90%

Margin of error (E) = 0.5 years

First, let's find the Z-score corresponding to a 90% confidence level. For a 90% confidence level, the Z-score is approximately 1.645.

Now, let's calculate the required sample size:

n = [(1.645 * 17.5) / 0.5]^2

Calculating the numerator, we have:

(1.645 * 17.5) ≈ 28.788

Dividing the numerator by the margin of error (0.5), we get:

28.788 / 0.5 ≈ 57.576

Finally, squaring the result, we have:

57.576^2 ≈ 3313.536

Therefore, we would need to obtain a sample size of approximately 3314 female statistics student ages to estimate the mean age of all female statistics students with 90% confidence and a margin of error of one-half year.

As for whether it seems reasonable to assume that the ages of female statistics students have less variation than ages of females in the general population, it depends on the specific context and characteristics of the population. The given information assumes that the ages of female statistics students have less variation, but without further information or data, it is difficult to definitively conclude. A more comprehensive analysis and comparison of the variability in ages between the two groups would be required to make a more informed determination.

Learn more about sample size:

https://brainly.com/question/17203075

#SPJ11

I was able to simplify to the final form of x+4/2x-6 but am unsure what the limits are. For example x cannot equal ….

Answers

By finding the zeros of the denominator we can see that x cannot be equal to 1 nor 3.

How to find the limits of the expression?

The values that can't be in the domain are all of these values such that one of the denominators becomes zero.

For the first one, it is:

2x - 2 = 0

2x = 2

x = 2/2

x = 1

That value is not in the domain.

For the second one:

0 = x² - 4x + 3

Using the quadratic formula we get:

[tex]x = \frac{4 \pm \sqrt{4^2 - 4*3*1} }{2*1} \\x = \frac{4 \pm 2}{2}[/tex]

So we also need to remove:

x = (4 + 2)/2 = 3

x = (4 - 2)/2 = 1

Then the limits are:

x cannot be equal to 1 nor 3.

learn more about rational functions:

https://brainly.com/question/1851758

#SPJ1

A section of a dam constructed from a clay is shown in Fig. P11.5. The dam is supported on 10 m of sandy clay with kx​=0.000012 cm/s and kz​=0.00002 cm/s. Below the sandy clay is a thick layer of impervious clay. (a) Draw the flownet under the dam. (b) Determine the porewater pressure distribution at the base of the dam. (c) Calculate the resultant uplift force and its location from the upstream face of the dam. IURE P11.5

Answers

a) Draw the flow net under the dam. The flow net is shown below in Figure 1.b) Determine the porewater pressure distribution at the base of the dam. The porewater pressure distribution is given in Figure 2.

c) Calculate the resultant uplift force and its location from the upstream face of the dam.

The uplift force (P) is given by the formula: P = γhKv  where  γ = unit weight of water h = thickness of saturated clay Kv = coefficient of vertical permeability of the soil  P = 10000 x 10 x 0.00002 = 2 kN/m.

The location of the resultant uplift force (X) from the upstream face of the dam is given by the formula: X = (h/3) (1 + 2B/A).

where A = area of the water surface B = area of the impervious base surface  A = 200 m² (assumed)B = 1000 m² (given)X = (10/3) (1 + 2 x 1000/200) = 52.67 m (approx.)

To know more about porewater visit:

https://brainly.com/question/32734929

#SPJ11

1.) In this method internal columns are assumed to be twice as stiff than external columns .
A)None of the other choice B)Factor Method
C)Portal Method
D)Cantilever Method

Answers

A fixed base may be used if the ground is stable and if the structure is not too high. The method is applied to framed structures where the frame has sufficient rigidity against sway, and it allows for the frame to be analyzed as a series of cantilevers.

The method in which internal columns are assumed to be twice as stiff as external columns is the Cantilever Method.

Cantilever Method This is a method used for structural analysis and design of continuous beams and structures. This method has two main assumptions, which are:

Internal columns are assumed to be twice as stiff as external columns.External columns carry all the axial loads and half of the bending moments.Portable frames with a maximum of 3 stories and a simple layout are typically evaluated using the Cantilever Method.

The total lateral load is taken up by a series of cantilevers, which are isolated from one another.A fixed base may be used if the ground is stable and if the structure is not too high. The method is applied to framed structures where the frame has sufficient rigidity against sway, and it allows for the frame to be analyzed as a series of cantilevers.

To know more about cantilevers visit:

https://brainly.com/question/29290377

#SPJ11

Other Questions
Question 3 Not yet answered Marked out of 4 Flag question Question 4 Emulsion 2 Using the range of surfactants, choose one surfactant with HLB value above the required HLB of the oil. Choose another surfactant with HLB value below the required HLB of the oil (ensure the HLB of the surfactants are 1-4 units above or below required HLB of the oil). Calculate the quantities of the two surfactants required so that the final HLB value matches the HLB value of the chosen surfactant in Emulsion 1. Report the answers in grams to three decimal places. Surfactant with lower HLB Surfactant with higher HL Emulsion 3 CTAB Tween 20 Sodium Oleate Span 20 Tween 80 Span 80 Tween 85 The magnitude of electric field intensity at point A(5,3,4) if an infinite uniform line charge of 10nC/m lie along the x-axis. 16V/m 26V/m 36V/m O46 V/m PS: In your sketches, label the axes, the amplitude and period of the signals properly. Problem 6 (Matlab exercise); Two plane waves traveling in opposite directions - movie. The given MATLAB code that plays a 2-D movie visualizing the spatial and temporal variations of the electric fields of two time-harmonic uniform plane electromagnetic waves that propagate in free space in the positive (forward) and negative (backward) x directions, respectively, approaching one another. The fields are given by E forvard =E msin(tx) and E backward =E msin(t+x) where the field amplitude is E m=1 V/m (for both waves), and the operating frequency amounts to f=100MHz. The movie lasts two time periods of the waves, 2 T, and spans a range of two wavelengths, 2, along the x-axis, with the two waves meeting at the center of this range. At the beginning of the movie (t=0), the waves appear at the opposite sides of the graph. You should explain the code (what does it do, briefly) and also the results when you run it. (q12) Find the volume of the solid obtained by rotating the region under the curve over the interval [4, 7] that will be rotated about the x-axis 7. Design an appropriate circuit to implement the following equation dV dt -5 [V dt Vout = 4- - Use a presentation tool of your choosing to create a slide-show presentation informing audiences about one of the following scientists and inventors:Marie Curie Use the principles of operant conditioning to teach a child with ADD or ADHD to sit still in class and raise their hand to speak in a classroom setting. Be sure to use appropriate terminology. Which type of conditioning might work best? Which of the four schedules of reinforcement do you think might work the best and why? A concave mirror with a focal length of 20 cm has an object placed in front of it at a distance of 18 cm. The object is 3 cm high. Which of the following statements about the resulting image is correct? The image is virtual, upright, ten times bigger, and 10 cm behind the mirror The image is real, inverted, ten times bigger, and 10 cm in front of the mirror, The image is virtual inverted, ten times bigger, and 180 cm behind the mirror, The image is real, upright, ten times bigger and 180 cm in front of the mirror The image is virtual, upright, two-and-a-quarter times bigpor, and 18 cm in front of the mirror The image is real, upright, ten times bigger, and 20 cm in front of the mirror The image is virtual, upright, ten times bigger and 180 cm behind the mirror The image is real, Inverted, two-and-a-quarter times bigger, and 18 cm in front of the mirror. The image is virtual, inverted, ten times bigger, and 20 cm behind the mirror With explainations please am not in hurry (45)Using activities, find Ag+ in 0.05 M KSCN saturated with AgSCN Ksp for AgSCN = 1.1 *10-1 Main Requirement: Create a music player with an LED matrix. As input the system will have a standard 3.5mm audio input. As output, the system will have 2 speakers in stereo format and an LED matrix of VU meter type audio volume indication.Other Requirements:- The device must have a volume control for the stereo speakers, it can be a control for each channel or preferably a single control for both. In addition, light-emitting diodes (LEDs) should be used in the structure as a visual element of the volume and tones of musical pieces (light scale). This type of representation is known as a VU meter. - A 6x10 matrix should be created where half is controlled by the left audio signal and the other half by the right signal. The volume control will be realized by analog integrated and discrete circuits, to implement the knowledge acquired during the course, specifically it seeks to use operational amplifiers and audio amplifiers. Amplification control is the heart of the project, and it must be designed in such a way that it does notthe audio output is distorted.- The circuit shall be operated from AC mains power from the home network, with no connections to DC sources. You must implement an AC to DC converter circuit that provides the necessary voltages and currents for the different integrated and discrete circuits to use. It is suggested to investigate power supply circuits with the circuits integrated 7812 and 7912.To Do:Please assemble the above by using some simulation software, such as: Multisim, LTspice, Tinkercad (preferred), Proteus; or another that allows to see the assembly of the entire component system with their assigned values If the embedded length of a Gr-60 rebar is only half of its development length, the rebar will only be expected to develop psi in strength. (Enter a number) how to write out "its 1:00" in spanish A distance A{B} is observed repestedly using the same equipment and procedures, and the results, in meters, are listed below: 67.401,67.400,67.402,67.406,67.401,67.401,67.405 , and If our perception can change due to traumatic situations.... how do first respon- ders focus during these same traumatic situations? This is for anyone to ex- pand on. A single stationary railway car is bumped by a fivecar train moving at 9.3 km/h. The six cars moveoff together after the collision. Assuming that the masses of all the railway cars are the same, then thespeed of the new sixcar train immediately after impact is A beam of light travels from air into an unknown liquid. The incident light ray strikes the air-liquid boundary at an angle of 35.3 degrees from the normal and the ray refracts into the liquid at an angle of 21.2 degrees from the normal. a) What is the index of refraction of the unknown liquid? b) If the ray of light started under the surface of the liquid and was directed towards the surface (towards the air-liquid boundary), what would be the critical angle for total internal reflection? 1. Identify the financial health of Amazon. Look at differentfinancial ratios2. How can you help forecast for Amazon? A chemical reactor process has the following transfer function, G (s) = (3s +1)(4s +1) Internal Model Control (IMC) scheme is to be applied to achieve set-point tracking and disturbance rejection. a) Draw a block diagram to show the configuration of the IMC control system, The b) Factorize G (s) into G (s) = Gm+ (S) Gm-(s) such that G+ (s) include terms that m m cannot be inversed and its steady state gain is 1. c) Determine the filter transfer function needed for design the IMC controller. Choose filter time constant as 1 sec. d) Design the IMC controller. Comment if the IMC controller can be implemented by a PID controller 5. Who argued that deceptive practices in advertising are"legitimate and socially desirable practices"?A) Theodore LevittB) John Maynard KeynesC) Adam SmithD) Milton FriedmanE) R. Edward Fre 50- In terms of soybean production, as stated in the lecture, which statement is false?Group of answer choicesThere is a high export demand for soybeansSoybean production works well in the large, level fields of the regionSoybeans thrive because there are few climate demandsSoybean production went from nearly 0 in 1949 to over 25 million hectares in 2000A two-year corn-soybean rotation works best for maximum productivity5- According to Hudson (Chapter 14), which of the following statements is NOT true?Group of answer choicesThe US automobile industries suffered from reduced demand around the same time that the steel industry suffered from similar problemsOne of Henry Fords innovations was the branch automobile assembly plantThe first automobiles were manufactured in EuropeHenry Ford invented the internal combustion engineAs the Detroit automakers grew, they outright bought the smaller companies which made specialized parts for them11- According to Hudson, much of the summer vegetable crop in the United States; such as peas, sweet corn, and snap beans, is produced on which soil type?Group of answer choicesOxisolsHistosolsAndisolsAlfisolsMollisols